切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2021, Vol. 15 ›› Issue (05) : 554 -561. doi: 10.3877/cma.j.issn.1674-134X.2021.05.006

荟萃分析

机器人辅助与传统手工全髋置换术疗效的Meta分析
王波1, 周楚乔1, 彭正午1, 黄添隆1, 毛新展1, 李辉1,()   
  1. 1. 410011 长沙,中南大学湘雅二医院骨科
  • 收稿日期:2020-10-09 出版日期:2021-10-01
  • 通信作者: 李辉

Meta-analysis of efficacy of robot-assisted versus conventional manual total hip arthroplasties

Bo Wang1, Chuqiao Zhou1, Zhengwu Peng1, Tianlong Huang1, Xinzhan Mao1, Hui Li1,()   

  1. 1. Department of orthopedics, Second Xiangya Hospital of Central South University, Changsha 410011, China
  • Received:2020-10-09 Published:2021-10-01
  • Corresponding author: Hui Li
引用本文:

王波, 周楚乔, 彭正午, 黄添隆, 毛新展, 李辉. 机器人辅助与传统手工全髋置换术疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2021, 15(05): 554-561.

Bo Wang, Chuqiao Zhou, Zhengwu Peng, Tianlong Huang, Xinzhan Mao, Hui Li. Meta-analysis of efficacy of robot-assisted versus conventional manual total hip arthroplasties[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2021, 15(05): 554-561.

目的

比较机器人辅助(RA)和传统手工(CM)在全髋关节置换(THA)术的临床疗效。

方法

对PubMed,荷兰医学文摘数据库(Embase),威科集团下的Ovid数据库,Web of Science和Cochrane Library共5个数据库进行检索,选择使用机器人辅助和传统手工进行全髋关节置换的随机对照试验(RCTs)提取相关资料(纳入比较机器人辅助和传统手工手术的随机临床试验)。采用RevMan 5.3软件对纳入数据进行异质性检验和Meta分析。

结果

最终纳入6篇RCTs文献,共686例全髋关节置换(686位患者)。RA与CM进行全髋关节置换术相比较,在Harris评分[加权均数差(WMD)=1.76,95%置信区间(CI)(-1.10,4.62)]、西安大略和麦克马斯特大学(WOMAC)骨关节炎指数评分[WMD=-1.71,95% CI(-5.42,1.99)]、下肢肢体长度差异(LLD)[OR=0.97,95% CI(0.51,1.82)]和异位骨化(HO)[OR=1.18,95% CI(0.49,0.85)]等方面差异无统计学意义(均为P>0.05)。而RA辅助下的全髋关节置换术在提高髋关节Merie D′ Aubigne评分[WMD=0.56, 95% CI(0.05,1.06)],柄的力线[WMD=-0.68,95% CI(-0.94,-0.43)]及减少术中并发症[OR=0.34,95% CI(0.12,0.96)]和减轻术后大腿疼痛[OR=0.30,95% CI(0.11,0.86)]明显优于CM组(均为P<0.05),但相较于CM组,RA组手术时间较长且术后脱位风险较高。

结论

机器人辅助下全髋关节置换术(RA组)在提高髋关节Merie D′ Aubigne评分,柄的力线及减少术中并发症和术后大腿疼痛明显优于CM组,但是手术时间较长且术后脱位风险较高。

Objective

To compare the clinical effects of robot-assisted (RA) and conventional manual (CM) in total hip arthroplasty(THA).

Methods

Published clinical studies on the treatment of robot-assisted and conventional manual in total hip arthroplasty were searched by five databases, including PubMed, Excerpta Medica Database(Embase), Ovid database, Web of Science and Cochrane Library. The literatures including randomized controlled trials (RCTs) comparing RA versus CM in THA were obtained. The meta-analysis and heterogeneity test were performed with RevMan 5.3 software.

Results

Six RCTs reporting 686 patients underwent total hip arthroplasty were included. Meta analysis results showed there was no significant statistical difference in Harris score[weighted mean difference(WMD)=1.76, 95% (CI)(-1.10, -4.62)], the Western Ontario and Mcmaster Universities(WOMAC) osteoarthritis index score[WMD=-1.71, 95% CI(-5.42, 1.99)], leg length discrepancy (LLD) [OR=0.97, 95% CI(0.51, 1.82)] or heterotopic ossification[OR=1.18, 95% CI(0.49, 0.85)] (all P> 0.05). However, RA THA was significantly better in improving the MerieD′Aubigne score[WMD=0.56, 95% CI(0.05, 1.06)], the stem alignment [WMD=-0.68, 95% CI(-0.94, -0.43)]and reducing intraoperative complications [OR=0.34, 95% CI(0.12, 0.96)] and postoperative thigh pain[OR=0.30, 95% CI(0.11, 0.86)] comparing with CM THA(all P<0.05). Compared with the CM group, the RA group showed longer operation time and higher risk of postoperative dislocation.

Conclusion

RA total hip arthroplasty was significantly better in improving the MerieD′Aubigne score, the stem alignment and reducing intraoperative complications and postoperative thigh pain comparing with CM, but compared with CM group, RA group has longer operation time and higher risk of postoperative dislocation.

表1 Meta分析中所包含文献的基本资料
图1 文献筛选流程图
图2 RCTs(随机对照试验)的风险偏倚图。图A为单篇文章偏倚风险图;图B为整体纳入文章的偏倚风险图
图3 RA(机器人辅助)与CM(传统手工)组手术时间比较的森林图
图4 RA(机器人辅助)与CM(传统手工)组患者术后功能比较的森林图
图5 RA(机器人辅助)与CM(传统手工)组患者术后假体柄力线比较的森林图
图6 RA(机器人辅助)与CM(传统手工)组患者术后LLD(下肢肢体长度差异)比较的森林图
图7 RA(机器人辅助)与CM(传统手工)组患者术后并发症比较的森林图
图8 RA(机器人辅助)与CM(传统手工)组手术时间比较的漏斗图
[1]
Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030[J]. J Bone Joint Surg Am, 2007, 89(4): 780-785.
[2]
Braaksma C, Wolterbeek N, Veen MR, et al. Systematic review and meta-analysis of measurement properties of the Hip disability and Osteoarthritis Outcome Score-Physical Function Shortform (HOOS-PS) and the Knee Injury and Osteoarthritis Outcome Score-Physical Function Shortform (KOOS-PS)[J]. Osteoarthritis Cartilage, 2020, 28(12): 1525-1538.
[3]
Murayama T, Ohnishi H, Mori T, et al. A novel non-invasive mechanical technique of cup and stem placement and leg length adjustment in total hip arthroplasty for dysplastic hips[J]. Int Orthop, 2015, 39(6): 1057-1064.
[4]
Schultz K, Ewbank ML, Pandit HG. Changing practice for hip arthroplasty and its implications[J]. Br J Nurs, 2017, 26(22): 1238-1244.
[5]
Callanan MC, Jarrett B, Bragdon CR, et al. The john charnley award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital[J]. Clin Orthop Relat Res, 2011, 469(2): 319-329.
[6]
Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions[J/OL]. Cochrane Database Syst Rev, 2019, 10:ED000142. doi: 10.1002/14651858.ED000142.
[7]
Bargar WL, Bauer A, Börner M. Primary and revision total hip replacement using the Robodoc system[J]. Clin Orthop Relat Res, 1998, (354):82-91.
[8]
Honl M, Dierk O, Gauck C, et al. Comparison of robotic-assisted and manual implantation of a primary total hip replacement. A prospective study[J]. J Bone Joint Surg Am, 2003, 85-A(8): 1470-1478.
[9]
Nishihara S, Sugano N, Nishii T, et al. Comparison between hand rasping and robotic milling for stem implantation in cementless total hip arthroplasty[J]. J Arthroplasty, 2006, 21(7): 957-966.
[10]
Nakamura N, Sugano N, Nishii T, et al. A comparison between robotic-assisted and manual implantation of cementless total hip arthroplasty[J]. Clin Orthop Relat Res, 2010, 468(4): 1072-1081.
[11]
Lim SJ, Ko KR, Park CW, et al. Robot-assisted primary cementless total hip arthroplasty with a short femoral stem: a prospective randomized short-term outcome study[J]. Comput Aided Surg, 2015, 20(1): 41-46.
[12]
Bargar WL, Parise CA, Hankins A, et al. Fourteen year follow-up of randomized clinical trials of active robotic-assisted total hip arthroplasty[J]. J Arthroplasty, 2018, 33(3): 810-814.
[13]
Bargar WL. Robots in orthopaedic surgery: past, present, and future[J]. Clin Orthop Relat Res, 2007, 463:31-36.
[14]
Lang JE, Mannava S, Floyd AJ, et al. Robotic systems in orthopaedic surgery[J]. J Bone Joint Surg Br, 2011, 93(10): 1296-1299.
[15]
Lim SJ, Kim SM, Kim K, et al. Robot-assisted primary cementless total hip arthroplasty with a short femoral stem:a prospective randomized mid-term outcome study[J]. Comput Aided Surg, 2015, 20(1): 41-46.
[16]
Lewinnek GE, Lewis JL, Tarr R, et al. Dislocations after total hip-replacement arthroplasties[J]. J Bone Joint Surg Am, 1978, 60(2): 217-220.
[17]
Bukowski BR, Anderson P, Khlopas A, et al. Improved functional outcomes with robotic compared with manual total hip arthroplasty[J]. Surg Technol Int, 2016, 29:303-308.
[18]
Decking J, Theis C, Achenbach T, et al. Robotic total knee arthroplasty: the accuracy of CT-based component placement[J]. Acta Orthop Scand, 2004, 75(5): 573-579.
[19]
Chen X, Xiong J, Wang P, et al. Robotic-assisted compared with conventional total hip arthroplasty: systematic review and meta-analysis[J]. Postgrad Med J, 2018, 94(1112): 335-341.
[20]
Tsai TY, Dimitriou D, Li JS, et al. Does haptic robot-assisted total hip arthroplasty better restore native acetabular and femoral anatomy?[J]. Int J Med Robot, 2016, 12(2): 288-295.
[21]
Kim WY. The importance of leg length discrepancy after total hip arthroplasty[J/OL]. J Bone Joint Surg Br, 2005, 87(9):1307. doi: 10.1302/0301-620X.87B8.16725.
[22]
Perets I, Walsh JP, Close MR, et al. Robot-assisted total hip arthroplasty: Clinical outcomes and complication rate[J/OL]. Int J Med Robot, 2018, 14(4):e1912. doi: 10.1002/rcs.1912.
[23]
Han PF, Chen CL, Zhang ZL, et al. Robotics-assisted versus conventional manual approaches for total hip arthroplasty: a systematic review and meta-analysis of comparative studies[J/OL]. Int J Med Robot, 2019, 15(3):e1990. doi: 10.1002/rcs.1990.
[24]
Furuhashi H, Yamato Y, Hoshino H, et al. Dislocation rate and its risk factors in total hip arthroplasty with concurrent extensive spinal corrective fusion with pelvic fixation for adult spinal deformity[J]. Eur J Orthop Surg Traumatol, 2021, 31(2): 283-290.
[25]
Weeden SH, Paprosky WG, Bowling JW. The early dislocation rate in primary total hip arthroplasty following the posterior approach with posterior soft-tissue repair[J]. J Arthroplasty, 2003, 18(6): 709-713.
[26]
Homma Y, Baba T, Kobayashi H, et al. Benefit and risk in short term after total hip arthroplasty by direct anterior approach combined with dual mobility cup[J]. Eur J Orthop Surg Traumatol, 2016, 26(6): 619-624.
[27]
Vasileiadis GI, Amanatullah DF, Crenshaw JR, et al. Effect of heterotopic ossification on hip range of motion and clinical outcome[J]. J Arthroplasty, 2015, 30(3): 461-464.
[1] 金鑫, 谢卯, 刘芸, 杨操, 杨述华, 许伟华. 个性化股骨导向器辅助初次全髋关节置换的随机对照研究[J]. 中华关节外科杂志(电子版), 2023, 17(06): 780-787.
[2] 张思平, 刘伟, 马鹏程. 全膝关节置换术后下肢轻度内翻对线对疗效的影响[J]. 中华关节外科杂志(电子版), 2023, 17(06): 808-817.
[3] 罗旺林, 杨传军, 许国星, 俞建国, 孙伟东, 颜文娟, 冯志. 开放性楔形胫骨高位截骨术不同植入材料的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 818-826.
[4] 孟繁宇, 周新社, 赵志, 裴立家, 刘犇. 侧位直接前方入路髋关节置换治疗偏瘫肢体股骨颈骨折[J]. 中华关节外科杂志(电子版), 2023, 17(06): 865-870.
[5] 马鹏程, 刘伟, 张思平. 股骨髋臼撞击综合征关节镜手术中闭合关节囊的疗效影响[J]. 中华关节外科杂志(电子版), 2023, 17(05): 653-662.
[6] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[7] 邢阳, 何爱珊, 康焱, 杨子波, 孟繁钢, 邬培慧. 前交叉韧带单束联合前外侧结构重建的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(04): 508-519.
[8] 李雄雄, 周灿, 徐婷, 任予, 尚进. 初诊导管原位癌伴微浸润腋窝淋巴结转移率的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 466-474.
[9] 张再博, 王冰雨, 焦志凯, 檀碧波. 胃癌术后下肢深静脉血栓危险因素的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 475-480.
[10] 武慧铭, 郭仁凯, 李辉宇. 机器人辅助下经自然腔道取标本手术治疗结直肠癌安全性和有效性的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(05): 395-400.
[11] 莫闲, 杨闯. 肝硬化患者并发门静脉血栓危险因素的Meta分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 678-683.
[12] 刘佳铭, 孙晓容, 文健, 何晓丽, 任茂玲. 有氧运动对成人哮喘肺功能、生活质量以及哮喘控制影响的Meta分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 592-595.
[13] 段文忠, 白延霞, 徐文亭, 祁虹霞, 吕志坚. 七氟烷和丙泊酚在肝切除术中麻醉效果比较Meta分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 640-645.
[14] 杨海龙, 邓满军, 樊羿辰, 徐梦钰, 陈芳德, 吴威浩, 张生元. 腹腔镜胆总管探查术一期缝合术后胆漏危险因素Meta分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 545-550.
[15] 徐红莉, 杨钰琳, 薛清, 张茜, 马丽虹, 邱振刚. 体外冲击波治疗非特异性腰痛疗效的系统评价和Meta分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 307-314.
阅读次数
全文


摘要