切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2021, Vol. 15 ›› Issue (01) : 92 -97. doi: 10.3877/cma.j.issn.1674-134X.2021.01.015

所属专题: 文献

综述

计算机辅助导航全膝关节置换术的当前概念和进展
周晓强1, 虞宵1, 佘远时1, 徐人杰1, 张向鑫1, 陈广祥1,()   
  1. 1. 215002 苏州,南京医科大学姑苏学院,南京医科大学附属苏州医院,苏州市立医院,关节外科
  • 收稿日期:2020-05-11 出版日期:2021-02-01
  • 通信作者: 陈广祥

Current concepts and advances in computer-assisted navigated total knee replacement

Xiaoqiang Zhou1, Xiao Yu1, Yuanshi She1, Renjie Xu1, Xiangxin Zhang1, Guangxiang Chen1,()   

  1. 1. Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
  • Received:2020-05-11 Published:2021-02-01
  • Corresponding author: Guangxiang Chen
引用本文:

周晓强, 虞宵, 佘远时, 徐人杰, 张向鑫, 陈广祥. 计算机辅助导航全膝关节置换术的当前概念和进展[J/OL]. 中华关节外科杂志(电子版), 2021, 15(01): 92-97.

Xiaoqiang Zhou, Xiao Yu, Yuanshi She, Renjie Xu, Xiangxin Zhang, Guangxiang Chen. Current concepts and advances in computer-assisted navigated total knee replacement[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2021, 15(01): 92-97.

全膝关节置换术(TKR)旨在重建胫股和髌股关节的稳定性,缓解疼痛,改善患者生活质量。计算机辅助导航系统的应用能够有效减少常规TKR手术下肢力线重建中的人为错误并改善手术结果。现有证据表明,应用计算机辅助导航系统能够显著减少术后机械轴和冠状位假体位置的异常值。此外,导航系统提供了常规手术无法获得的软组织平衡客观评估。应用导航系统可以帮助关节外科医生提高截骨精确性,降低假体位置不良和下肢轴线偏差的风险,同时优化软组织平衡。相信随着其更广泛的应用,长期临床效益将被进一步证明。本文就计算机辅助导航下TKR的原理和组成,机械轴的恢复和假体位置,软组织平衡和临床结果,与其他技术比较等方面进行综述。

Total knee replacements (TKR) aim to restore stability of the tibiofemoral and patella-femoral joints and provide relief of pain and improved quality of life for the patient. The application of computer-assisted navigation system can effectively reduce human error in joint alignment and improving patient outcomes. The current body of evidence shows that the use of computer navigation systems for TKR significantly reduces outliers in the mechanical axis and coronal prosthetic position. Also, navigation systems offer an objective assessment of soft tissue balancing that had previously not been available. Computer-assisted navigation systems can help orthopedic surgeons improve the accuracy of osteotomy, reduce the risk of prosthesis position and lower limb axis deviation, and optimize soft tissue balance. With its wider application, long-term clinical benefits will be further proved. The principles and components of computer-assisted navigation, component orientation and restoration of the mechanical axis, soft tissue balance, clinical outcomes, and other technologies were summarized in this article.

[1]
Insall JN, Binazzi R, Soudry M, et al. Total knee arthroplasty [J]. Clin Orthop Relat Res, 1985, 192: 13-22.
[2]
Chalmers BP, Limberg AK, Athey AG, et al. Total knee arthroplasty after distal femoral osteotomy long-term survivorship and clinical outcomes[J]. Bone Joint J, 2019, 101-B(6): 660-666.
[3]
Miyasaka T, Kurosaka D, Saito M, et al. Accuracy of computed tomography-based navigation International assisted total knee arthroplasty: outlier analysis[J]. J Arthroplasty, 2017, 32(1): 47-52.
[4]
Gharaibeh MA, Solayar GN, Harris IA, et al. Accelerometer-based, portable navigation (knee align) vs conventional instrumentation for total knee arthroplasty: a prospective randomized comparative trial[J]. J Arthroplasty, 2017, 32(3): 777-782.
[5]
Mason JB, Fehring TK, Estok R, et al. Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery[J]. J Arthroplasty, 2007, 22(8): 1097-1106.
[6]
Todesca A, Garro L, Penna M, et al. Conventional versus computer-navigated TKR: a prospective randomized study[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(6): 1778-1783.
[7]
Suero EM, Lueke U, Stuebig T, et al. Computer navigation for total knee arthroplasty achieves better postoperative alignment compared to conventional and patient-specific instrumentation in a low-volume setting[J]. Orthop Traumatol Surg Res, 2018, 104(7): 971-975.
[8]
Rhee SJ, Kim HJ, Lee CR, et al. A comparison of long-term outcomes of computer-navigated and conventional total knee arthroplasty: a meta-analysis of randomized controlled trials[J]. J Bone Joint Surg Am, 2019, 101(20): 1875-1885.
[9]
Krackow KA, Raju S, Puttaswamy MK. Medial over-resection of the tibia in total knee arthroplasty for varus deformity using computer navigation[J]. J Arthroplasty, 2015, 30(5): 766-769.
[10]
Matsumoto T, Nakano N, Lawrence JE, et al. Current concepts and future perspectives in computer-assisted navigated total knee replacement[J]. Int Orthop, 2019, 43(6): 1337-1343.
[11]
Minoda Y, Watanabe K, Iwaki H, et al. Theoretical risk of anterior femoral cortex notching in total knee arthroplasty using a navigation system[J]. J Arthroplasty, 2013, 28(9): 1533-1537.
[12]
Chung BJ, Kang YG, Chang CB, et al. Differences between sagittal femoral mechanical and distal reference axes should be considered in navigated TKA[J]. Clin Orthop Relat Res, 2009, 467(9): 2403-2413.
[13]
Selvanayagam R, Kumar V, Malhotra R, et al. A prospective randomized study comparing navigation versus conventional total knee arthroplasty[J/OL]. J Orthop Surg (Hong Kong), 2019, 27(2): 2309499019848079.doi: 10.1177/2309499019848079.
[14]
Hanada M, Furuhashi H, Matsuyama Y. Investigation of the control of rotational alignment in the tibial component during total knee arthroplasty[J]. Eur J Orthop Surg Traumatol, 2019, 29(6): 1313-1317.
[15]
Burnett RS, Barrack RL. Computer-assisted total knee arthroplasty is currently of no proven clinical benefit: a systematic review[J]. Clin OrthopRelat Res, 2013, 471(1): 264-276.
[16]
Chow J, Law TY, Roche M. Sensor-based soft tissue balancing in total knee arthroplasty [J]. Adv Exp Med Biol, 2018, 1093: 327-334.
[17]
Nakamura S, Kuriyama S, Nishitani K, et al. Correlation between intraoperative anterior stability and flexion gap in total knee arthroplasty [J]. J Arthroplasty, 2018, 33(8): 2480-2484.
[18]
Winemaker MJ. Perfect balance in total knee arthroplasty: the elusive compromise[J]. J Arthroplasty, 2002, 17(1): 2-10.
[19]
Mehliβ V, Strauch LM, Serrano OA, et al. Proven accuracy for a new dynamic gap measurement in navigated TKA[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(4): 1189-1195.
[20]
Ishida K, Shibanuma N, Takayama K, et al. Posterior reference position affects intraoperative kinematic and soft tissue balance in navigated posterior-stabilized total knee arthroplasty[J]. J Arthroplasty, 2018, 33(9): 2851-2857.
[21]
Stindel E, Briard JL, Merloz P, et al. Bone morphing: 3D morphological data for total knee arthroplasty[J]. Comput Aided Surg, 2002, 7(3): 156-168.
[22]
Kamat YD, Aurakzai KM, Adhikari AR. Computer navigation of soft tissues in total knee replacement[J]. J Knee Surg, 2013, 26(3): 145-150.
[23]
Matsumoto T, Kubo S, Muratsu H, et al. Different pattern in gap balancing between the cruciate-retaining and posterior-stabilized total knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2013, 21(10): 2338-2345.
[24]
Joseph J, Simpson PM, Whitehouse SL, et al. The use of navigation to achieve soft tissue balance in total knee arthroplasty-a randomised clinical study[J]. Knee, 2013, 20(6): 401-406.
[25]
Lee DH, Park JH, Song DI, et al. Accuracy of soft tissue balancing in TKA: comparison between navigation-assisted gap balancing and conventional measured resection[J]. Knee Surg Sports Traumatol Arthrosc, 2010, 18(3): 381-387.
[26]
Mcclelland JA, Webster KE, Ramteke AA, et al. Total knee arthroplasty with computer-assisted navigation more closely replicates normal knee biomechanics than conventional surgery[J]. Knee, 2017, 24(3): 651-656.
[27]
Petursson G, Fenstad AM, Gøthesen Ø, et al. Computer-assisted compared with conventional total knee replacement: a multicenter Parallel-Group randomized controlled trial[J]. J Bone Joint Surg Am, 2018, 100(15): 1265-1274.
[28]
Panjwani TR, Mullaji A, Doshi K, et al. Comparison of functional outcomes of computer-assisted vs conventional total knee arthroplasty: a systematic review and meta-analysis of high-quality, prospective studies[J]. J Arthroplasty, 2019, 34(3): 586-593.
[29]
Saragaglia D, Sigwalt L, Gaillot J, et al. Results with eight and a half years average follow-up on two hundred and eight e-Motion FP® knee prostheses, fitted using computer navigation for knee osteoarthritis in patients with over ten degrees genu varum[J]. Int Orthop, 2018, 42(4): 799-804.
[30]
Baumbach JA, Willburger R, Haaker R, et al. 10-Year survival of navigated versus conventional TKAs: a retrospective study[J]. Orthopedics, 2016, 39(3 Suppl): S72-S76.
[31]
Johnson DR, Dennis DA, Kindsfater KA, et al. Evaluation of total knee arthroplasty performed with and without computer navigation: a bilateral total knee arthroplasty study[J]. J Arthroplasty, 2013, 28(3): 455-458.
[32]
Bellemans J. Neutral mechanical alignment: a requirement for successful TKA: opposes[J/OL]. Orthopedics, 2011, 34(9): e507-e509. doi: 10.3928/01477447-20110714-41.
[33]
Parratte S, Pagnano MW, Trousdale RT, et al. Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements[J]. J Bone Joint Surg Am, 2010, 92(12): 2143-2149.
[34]
Lang JE, Mannava S, Floyd AJ, et al. Robotic systems in orthopaedic surgery[J]. J Bone Joint Surg Br, 2011, 93(10): 1296-1299.
[35]
Siddiqi A, Wm H, Eachempati KK, et al. Advances in computer-aided technology for total knee arthroplasty[J/OL]. Orthopedics, 2017, 40(6): 338-352. doi: 10.3928/01477447-20170831-02.
[36]
Lonner JH, Smith JR, Picard F, et al. High degree of accuracy of a novel image-free handheld robot for unicondylar knee arthroplasty in a cadaveric study[J]. Clin Orthop Relat Res, 2015, 473(1): 206-212.
[37]
Clark TC, Schmidt FH. Robot-assisted navigation versus computer-assisted navigation in primary total knee arthroplasty: efficiency and accuracy[J/OL]. ISRN Orthop, 2013, 2013: 794827.doi: 10.1155/2013/794827.
[38]
Macdessi SJ, Jang B, Harris IA, et al. A comparison of alignment using patient specific guides, computer navigation and conventional instrumentation in total knee arthroplasty[J]. Knee, 2014, 21(2): 406-409.
[39]
Gong S, Xu W, Wang R, et al. Patient-specific instrumentation improved axial alignment of the femoral component, operative time and perioperative blood loss after total knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(4): 1083-1095.
[40]
Gustke KA, Gj G, Roche MW, et al. Increased satisfaction after total knee replacement using sensor-guided technology[J]. Bone Joint J, 2014, 96-B(10): 1333-1338.
[41]
Gustke KA, Gj G, Roche MW, et al. A targeted approach to ligament balancing using kinetic sensors[J]. J Arthroplasty, 2017, 32(7): 2127-2132.
[42]
Tigani D, Masetti G, Sabbioni G, et al. Computer-assisted surgery as indication of choice: total knee arthroplasty in case of retained hardware or extra-articular deformity[J]. Int Orthop, 2012, 36(7): 1379-1385.
[43]
Shetty GM, Mullaji AB, Bhayde S, et al. No effect of obesity on limb and component alignment after computer-assisted total knee arthroplasty[J]. Knee, 2014, 21(4): 862-865.
[44]
AlcelikI A, Blomfield MI, Diana G, et al. A comparison of short-term outcomes of minimally invasive computer-assisted vs minimally invasive conventional instrumentation for primary total knee arthroplasty: a systematic review and meta-analysis[J]. J Arthroplasty, 2016, 31(2): 410-418.
[45]
Zhu M, Ang CL, Yeo SJ, et al. Minimally invasive computer-assisted total knee arthroplasty compared with conventional total knee arthroplasty: a prospective 9-Year Follow-Up[J]. J Arthroplasty, 2016, 31(5): 1000-1004.
[1] 陈晓玲, 钟永洌, 刘巧梨, 李娜, 张志奇, 廖威明, 黄桂武. 超高龄髋膝关节术后谵妄及心血管并发症风险预测[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 575-584.
[2] 马桥桥, 张传开, 郭开今, 蒋涛, 王子豪, 刘勇, 郝亮. 可降解止血粉减少初次全膝关节置换术失血量的研究[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 585-589.
[3] 刘鹏, 罗天, 许珂媛, 邓红美, 李瑄, 唐翠萍. 八段锦对膝关节炎疗效的初步步态分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 590-595.
[4] 李焕玺, 何淳诺, 田志敏, 周胜虎, 吴昊越, 张浩强. 全膝关节置换术后股骨远端假体周围骨折治疗现状[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 630-637.
[5] 王相迎, 杨长生, 曲铁兵. 固定平台单髁置换假体合适位置的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 638-645.
[6] 苏介茂, 齐岩松, 王永祥, 魏宝刚, 马秉贤, 张鹏飞, 魏兴华, 徐永胜. 关节镜手术在早中期膝骨关节炎治疗的应用进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 646-652.
[7] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[8] 李友, 唐林峰, 杜伟伟, 刘海亮, 余新水, 沈佳宇, 巨积辉. 皮瓣联合掌长肌腱折叠单排三点式固定治疗指背侧创面伴锤状指畸形的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 485-490.
[9] 刘敏, 唐恩溢, 刘喆, 葛苏蒙, 刘梅, 孙国文. 计算机导航技术在口腔颌面部微小异物取出手术中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 375-379.
[10] 孙莲, 马红萍, 吴文英. 局部进展期甲状腺癌患者外科处理[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 112-114.
[11] 刘卓, 张宗明, 张翀, 刘立民, 赵月, 齐晖. 腹腔镜手术治疗高龄急性梗阻性化脓性胆管炎患者的安全性与术式选择[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 795-800.
[12] 陈宗杰, 胡添松. 肝外伤破裂患者治疗后胆漏发生影响因素分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 836-840.
[13] 宋庆成, 郑占乐, 王天瑞, 王宇钏, 张凯旋, 纳静, 蔚佳昊, 杨思繁, 宋九宏, 张英泽. “人老膝不老”:膝关节健康管理的全方位探索与实践[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 321-324.
[14] 郑占乐, 王宇钏, 蔚佳昊, 宋庆成, 张凯旋, 纳静, 王天瑞, 宋九宏, 张英泽, 王娟. 保膝须“开膝”——“开膝”在膝骨关节炎中的临床应用价值[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 325-330.
[15] 王松雷, 张贻良, 孟浩, 宋威, 白林晨, 袁心, 张辉. 股骨前髁预截骨髓外定位技术在全膝关节置换术中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 811-819.
阅读次数
全文


摘要