切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2021, Vol. 15 ›› Issue (01) : 92 -97. doi: 10.3877/cma.j.issn.1674-134X.2021.01.015

所属专题: 文献

综述

计算机辅助导航全膝关节置换术的当前概念和进展
周晓强1, 虞宵1, 佘远时1, 徐人杰1, 张向鑫1, 陈广祥1,()   
  1. 1. 215002 苏州,南京医科大学姑苏学院,南京医科大学附属苏州医院,苏州市立医院,关节外科
  • 收稿日期:2020-05-11 出版日期:2021-02-01
  • 通信作者: 陈广祥

Current concepts and advances in computer-assisted navigated total knee replacement

Xiaoqiang Zhou1, Xiao Yu1, Yuanshi She1, Renjie Xu1, Xiangxin Zhang1, Guangxiang Chen1,()   

  1. 1. Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
  • Received:2020-05-11 Published:2021-02-01
  • Corresponding author: Guangxiang Chen
引用本文:

周晓强, 虞宵, 佘远时, 徐人杰, 张向鑫, 陈广祥. 计算机辅助导航全膝关节置换术的当前概念和进展[J]. 中华关节外科杂志(电子版), 2021, 15(01): 92-97.

Xiaoqiang Zhou, Xiao Yu, Yuanshi She, Renjie Xu, Xiangxin Zhang, Guangxiang Chen. Current concepts and advances in computer-assisted navigated total knee replacement[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2021, 15(01): 92-97.

全膝关节置换术(TKR)旨在重建胫股和髌股关节的稳定性,缓解疼痛,改善患者生活质量。计算机辅助导航系统的应用能够有效减少常规TKR手术下肢力线重建中的人为错误并改善手术结果。现有证据表明,应用计算机辅助导航系统能够显著减少术后机械轴和冠状位假体位置的异常值。此外,导航系统提供了常规手术无法获得的软组织平衡客观评估。应用导航系统可以帮助关节外科医生提高截骨精确性,降低假体位置不良和下肢轴线偏差的风险,同时优化软组织平衡。相信随着其更广泛的应用,长期临床效益将被进一步证明。本文就计算机辅助导航下TKR的原理和组成,机械轴的恢复和假体位置,软组织平衡和临床结果,与其他技术比较等方面进行综述。

Total knee replacements (TKR) aim to restore stability of the tibiofemoral and patella-femoral joints and provide relief of pain and improved quality of life for the patient. The application of computer-assisted navigation system can effectively reduce human error in joint alignment and improving patient outcomes. The current body of evidence shows that the use of computer navigation systems for TKR significantly reduces outliers in the mechanical axis and coronal prosthetic position. Also, navigation systems offer an objective assessment of soft tissue balancing that had previously not been available. Computer-assisted navigation systems can help orthopedic surgeons improve the accuracy of osteotomy, reduce the risk of prosthesis position and lower limb axis deviation, and optimize soft tissue balance. With its wider application, long-term clinical benefits will be further proved. The principles and components of computer-assisted navigation, component orientation and restoration of the mechanical axis, soft tissue balance, clinical outcomes, and other technologies were summarized in this article.

[1]
Insall JN, Binazzi R, Soudry M, et al. Total knee arthroplasty [J]. Clin Orthop Relat Res, 1985, 192: 13-22.
[2]
Chalmers BP, Limberg AK, Athey AG, et al. Total knee arthroplasty after distal femoral osteotomy long-term survivorship and clinical outcomes[J]. Bone Joint J, 2019, 101-B(6): 660-666.
[3]
Miyasaka T, Kurosaka D, Saito M, et al. Accuracy of computed tomography-based navigation International assisted total knee arthroplasty: outlier analysis[J]. J Arthroplasty, 2017, 32(1): 47-52.
[4]
Gharaibeh MA, Solayar GN, Harris IA, et al. Accelerometer-based, portable navigation (knee align) vs conventional instrumentation for total knee arthroplasty: a prospective randomized comparative trial[J]. J Arthroplasty, 2017, 32(3): 777-782.
[5]
Mason JB, Fehring TK, Estok R, et al. Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery[J]. J Arthroplasty, 2007, 22(8): 1097-1106.
[6]
Todesca A, Garro L, Penna M, et al. Conventional versus computer-navigated TKR: a prospective randomized study[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(6): 1778-1783.
[7]
Suero EM, Lueke U, Stuebig T, et al. Computer navigation for total knee arthroplasty achieves better postoperative alignment compared to conventional and patient-specific instrumentation in a low-volume setting[J]. Orthop Traumatol Surg Res, 2018, 104(7): 971-975.
[8]
Rhee SJ, Kim HJ, Lee CR, et al. A comparison of long-term outcomes of computer-navigated and conventional total knee arthroplasty: a meta-analysis of randomized controlled trials[J]. J Bone Joint Surg Am, 2019, 101(20): 1875-1885.
[9]
Krackow KA, Raju S, Puttaswamy MK. Medial over-resection of the tibia in total knee arthroplasty for varus deformity using computer navigation[J]. J Arthroplasty, 2015, 30(5): 766-769.
[10]
Matsumoto T, Nakano N, Lawrence JE, et al. Current concepts and future perspectives in computer-assisted navigated total knee replacement[J]. Int Orthop, 2019, 43(6): 1337-1343.
[11]
Minoda Y, Watanabe K, Iwaki H, et al. Theoretical risk of anterior femoral cortex notching in total knee arthroplasty using a navigation system[J]. J Arthroplasty, 2013, 28(9): 1533-1537.
[12]
Chung BJ, Kang YG, Chang CB, et al. Differences between sagittal femoral mechanical and distal reference axes should be considered in navigated TKA[J]. Clin Orthop Relat Res, 2009, 467(9): 2403-2413.
[13]
Selvanayagam R, Kumar V, Malhotra R, et al. A prospective randomized study comparing navigation versus conventional total knee arthroplasty[J/OL]. J Orthop Surg (Hong Kong), 2019, 27(2): 2309499019848079.doi: 10.1177/2309499019848079.
[14]
Hanada M, Furuhashi H, Matsuyama Y. Investigation of the control of rotational alignment in the tibial component during total knee arthroplasty[J]. Eur J Orthop Surg Traumatol, 2019, 29(6): 1313-1317.
[15]
Burnett RS, Barrack RL. Computer-assisted total knee arthroplasty is currently of no proven clinical benefit: a systematic review[J]. Clin OrthopRelat Res, 2013, 471(1): 264-276.
[16]
Chow J, Law TY, Roche M. Sensor-based soft tissue balancing in total knee arthroplasty [J]. Adv Exp Med Biol, 2018, 1093: 327-334.
[17]
Nakamura S, Kuriyama S, Nishitani K, et al. Correlation between intraoperative anterior stability and flexion gap in total knee arthroplasty [J]. J Arthroplasty, 2018, 33(8): 2480-2484.
[18]
Winemaker MJ. Perfect balance in total knee arthroplasty: the elusive compromise[J]. J Arthroplasty, 2002, 17(1): 2-10.
[19]
Mehliβ V, Strauch LM, Serrano OA, et al. Proven accuracy for a new dynamic gap measurement in navigated TKA[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(4): 1189-1195.
[20]
Ishida K, Shibanuma N, Takayama K, et al. Posterior reference position affects intraoperative kinematic and soft tissue balance in navigated posterior-stabilized total knee arthroplasty[J]. J Arthroplasty, 2018, 33(9): 2851-2857.
[21]
Stindel E, Briard JL, Merloz P, et al. Bone morphing: 3D morphological data for total knee arthroplasty[J]. Comput Aided Surg, 2002, 7(3): 156-168.
[22]
Kamat YD, Aurakzai KM, Adhikari AR. Computer navigation of soft tissues in total knee replacement[J]. J Knee Surg, 2013, 26(3): 145-150.
[23]
Matsumoto T, Kubo S, Muratsu H, et al. Different pattern in gap balancing between the cruciate-retaining and posterior-stabilized total knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2013, 21(10): 2338-2345.
[24]
Joseph J, Simpson PM, Whitehouse SL, et al. The use of navigation to achieve soft tissue balance in total knee arthroplasty-a randomised clinical study[J]. Knee, 2013, 20(6): 401-406.
[25]
Lee DH, Park JH, Song DI, et al. Accuracy of soft tissue balancing in TKA: comparison between navigation-assisted gap balancing and conventional measured resection[J]. Knee Surg Sports Traumatol Arthrosc, 2010, 18(3): 381-387.
[26]
Mcclelland JA, Webster KE, Ramteke AA, et al. Total knee arthroplasty with computer-assisted navigation more closely replicates normal knee biomechanics than conventional surgery[J]. Knee, 2017, 24(3): 651-656.
[27]
Petursson G, Fenstad AM, Gøthesen Ø, et al. Computer-assisted compared with conventional total knee replacement: a multicenter Parallel-Group randomized controlled trial[J]. J Bone Joint Surg Am, 2018, 100(15): 1265-1274.
[28]
Panjwani TR, Mullaji A, Doshi K, et al. Comparison of functional outcomes of computer-assisted vs conventional total knee arthroplasty: a systematic review and meta-analysis of high-quality, prospective studies[J]. J Arthroplasty, 2019, 34(3): 586-593.
[29]
Saragaglia D, Sigwalt L, Gaillot J, et al. Results with eight and a half years average follow-up on two hundred and eight e-Motion FP® knee prostheses, fitted using computer navigation for knee osteoarthritis in patients with over ten degrees genu varum[J]. Int Orthop, 2018, 42(4): 799-804.
[30]
Baumbach JA, Willburger R, Haaker R, et al. 10-Year survival of navigated versus conventional TKAs: a retrospective study[J]. Orthopedics, 2016, 39(3 Suppl): S72-S76.
[31]
Johnson DR, Dennis DA, Kindsfater KA, et al. Evaluation of total knee arthroplasty performed with and without computer navigation: a bilateral total knee arthroplasty study[J]. J Arthroplasty, 2013, 28(3): 455-458.
[32]
Bellemans J. Neutral mechanical alignment: a requirement for successful TKA: opposes[J/OL]. Orthopedics, 2011, 34(9): e507-e509. doi: 10.3928/01477447-20110714-41.
[33]
Parratte S, Pagnano MW, Trousdale RT, et al. Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements[J]. J Bone Joint Surg Am, 2010, 92(12): 2143-2149.
[34]
Lang JE, Mannava S, Floyd AJ, et al. Robotic systems in orthopaedic surgery[J]. J Bone Joint Surg Br, 2011, 93(10): 1296-1299.
[35]
Siddiqi A, Wm H, Eachempati KK, et al. Advances in computer-aided technology for total knee arthroplasty[J/OL]. Orthopedics, 2017, 40(6): 338-352. doi: 10.3928/01477447-20170831-02.
[36]
Lonner JH, Smith JR, Picard F, et al. High degree of accuracy of a novel image-free handheld robot for unicondylar knee arthroplasty in a cadaveric study[J]. Clin Orthop Relat Res, 2015, 473(1): 206-212.
[37]
Clark TC, Schmidt FH. Robot-assisted navigation versus computer-assisted navigation in primary total knee arthroplasty: efficiency and accuracy[J/OL]. ISRN Orthop, 2013, 2013: 794827.doi: 10.1155/2013/794827.
[38]
Macdessi SJ, Jang B, Harris IA, et al. A comparison of alignment using patient specific guides, computer navigation and conventional instrumentation in total knee arthroplasty[J]. Knee, 2014, 21(2): 406-409.
[39]
Gong S, Xu W, Wang R, et al. Patient-specific instrumentation improved axial alignment of the femoral component, operative time and perioperative blood loss after total knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(4): 1083-1095.
[40]
Gustke KA, Gj G, Roche MW, et al. Increased satisfaction after total knee replacement using sensor-guided technology[J]. Bone Joint J, 2014, 96-B(10): 1333-1338.
[41]
Gustke KA, Gj G, Roche MW, et al. A targeted approach to ligament balancing using kinetic sensors[J]. J Arthroplasty, 2017, 32(7): 2127-2132.
[42]
Tigani D, Masetti G, Sabbioni G, et al. Computer-assisted surgery as indication of choice: total knee arthroplasty in case of retained hardware or extra-articular deformity[J]. Int Orthop, 2012, 36(7): 1379-1385.
[43]
Shetty GM, Mullaji AB, Bhayde S, et al. No effect of obesity on limb and component alignment after computer-assisted total knee arthroplasty[J]. Knee, 2014, 21(4): 862-865.
[44]
AlcelikI A, Blomfield MI, Diana G, et al. A comparison of short-term outcomes of minimally invasive computer-assisted vs minimally invasive conventional instrumentation for primary total knee arthroplasty: a systematic review and meta-analysis[J]. J Arthroplasty, 2016, 31(2): 410-418.
[45]
Zhu M, Ang CL, Yeo SJ, et al. Minimally invasive computer-assisted total knee arthroplasty compared with conventional total knee arthroplasty: a prospective 9-Year Follow-Up[J]. J Arthroplasty, 2016, 31(5): 1000-1004.
[1] 金鑫, 谢卯, 刘芸, 杨操, 杨述华, 许伟华. 个性化股骨导向器辅助初次全髋关节置换的随机对照研究[J]. 中华关节外科杂志(电子版), 2023, 17(06): 780-787.
[2] 邓华梅, 袁札根, 曾德荣, 潘珊珊, 张葆青, 欧爱华, 曹学伟. 全膝关节置换术中气压止血带应用效果与影响因素分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 788-794.
[3] 张思平, 刘伟, 马鹏程. 全膝关节置换术后下肢轻度内翻对线对疗效的影响[J]. 中华关节外科杂志(电子版), 2023, 17(06): 808-817.
[4] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[5] 林文, 王雨萱, 许嘉悦, 王矜群, 王睿娜, 何董源, 樊沛. 人工关节置换登记系统的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 834-841.
[6] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[7] 黄子荣, 罗渝鑫, 杨文瀚, 陈小虎, 谢环宇, 朱伟民. 前交叉韧带重建对膝关节稳定性影响的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 847-854.
[8] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[9] 贺敬龙, 尚宏喜, 郝敏, 谢伟, 高明宏, 孙炜, 刘安庆. 重度类风湿关节炎患者行多关节置换术的临床手术疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 860-864.
[10] 孟繁宇, 周新社, 赵志, 裴立家, 刘犇. 侧位直接前方入路髋关节置换治疗偏瘫肢体股骨颈骨折[J]. 中华关节外科杂志(电子版), 2023, 17(06): 865-870.
[11] 王宏宇. 固定与活动平台假体在全膝关节置换术中的应用价值[J]. 中华关节外科杂志(电子版), 2023, 17(06): 871-876.
[12] 夏传龙, 迟健, 丛强, 连杰, 崔峻, 陈彦玲. 富血小板血浆联合关节镜治疗半月板损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 877-881.
[13] 程相阵. 腹茧症9例诊治分析并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(9): 968-971.
[14] 付庆鹏, 邓晓强, 高伟, 姜福民, 范永峰, 吴海贺, 齐岩松, 包呼日查, 徐永胜. 新型股骨测量定位器在全膝关节置换术中的临床应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 980-987.
[15] 李岩松, 李涛, 张元鸣飞, 李志鹏, 周谋望. 头戴式虚拟现实设备辅助全膝关节置换术后康复的初步研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 676-681.
阅读次数
全文


摘要