[1] |
Insall JN, Binazzi R, Soudry M, et al. Total knee arthroplasty [J]. Clin Orthop Relat Res, 1985, 192: 13-22.
|
[2] |
Chalmers BP, Limberg AK, Athey AG, et al. Total knee arthroplasty after distal femoral osteotomy long-term survivorship and clinical outcomes[J]. Bone Joint J, 2019, 101-B(6): 660-666.
|
[3] |
Miyasaka T, Kurosaka D, Saito M, et al. Accuracy of computed tomography-based navigation International assisted total knee arthroplasty: outlier analysis[J]. J Arthroplasty, 2017, 32(1): 47-52.
|
[4] |
Gharaibeh MA, Solayar GN, Harris IA, et al. Accelerometer-based, portable navigation (knee align) vs conventional instrumentation for total knee arthroplasty: a prospective randomized comparative trial[J]. J Arthroplasty, 2017, 32(3): 777-782.
|
[5] |
Mason JB, Fehring TK, Estok R, et al. Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery[J]. J Arthroplasty, 2007, 22(8): 1097-1106.
|
[6] |
Todesca A, Garro L, Penna M, et al. Conventional versus computer-navigated TKR: a prospective randomized study[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(6): 1778-1783.
|
[7] |
Suero EM, Lueke U, Stuebig T, et al. Computer navigation for total knee arthroplasty achieves better postoperative alignment compared to conventional and patient-specific instrumentation in a low-volume setting[J]. Orthop Traumatol Surg Res, 2018, 104(7): 971-975.
|
[8] |
Rhee SJ, Kim HJ, Lee CR, et al. A comparison of long-term outcomes of computer-navigated and conventional total knee arthroplasty: a meta-analysis of randomized controlled trials[J]. J Bone Joint Surg Am, 2019, 101(20): 1875-1885.
|
[9] |
Krackow KA, Raju S, Puttaswamy MK. Medial over-resection of the tibia in total knee arthroplasty for varus deformity using computer navigation[J]. J Arthroplasty, 2015, 30(5): 766-769.
|
[10] |
Matsumoto T, Nakano N, Lawrence JE, et al. Current concepts and future perspectives in computer-assisted navigated total knee replacement[J]. Int Orthop, 2019, 43(6): 1337-1343.
|
[11] |
Minoda Y, Watanabe K, Iwaki H, et al. Theoretical risk of anterior femoral cortex notching in total knee arthroplasty using a navigation system[J]. J Arthroplasty, 2013, 28(9): 1533-1537.
|
[12] |
Chung BJ, Kang YG, Chang CB, et al. Differences between sagittal femoral mechanical and distal reference axes should be considered in navigated TKA[J]. Clin Orthop Relat Res, 2009, 467(9): 2403-2413.
|
[13] |
Selvanayagam R, Kumar V, Malhotra R, et al. A prospective randomized study comparing navigation versus conventional total knee arthroplasty[J/OL]. J Orthop Surg (Hong Kong), 2019, 27(2): 2309499019848079.doi: 10.1177/2309499019848079.
|
[14] |
Hanada M, Furuhashi H, Matsuyama Y. Investigation of the control of rotational alignment in the tibial component during total knee arthroplasty[J]. Eur J Orthop Surg Traumatol, 2019, 29(6): 1313-1317.
|
[15] |
Burnett RS, Barrack RL. Computer-assisted total knee arthroplasty is currently of no proven clinical benefit: a systematic review[J]. Clin OrthopRelat Res, 2013, 471(1): 264-276.
|
[16] |
Chow J, Law TY, Roche M. Sensor-based soft tissue balancing in total knee arthroplasty [J]. Adv Exp Med Biol, 2018, 1093: 327-334.
|
[17] |
Nakamura S, Kuriyama S, Nishitani K, et al. Correlation between intraoperative anterior stability and flexion gap in total knee arthroplasty [J]. J Arthroplasty, 2018, 33(8): 2480-2484.
|
[18] |
Winemaker MJ. Perfect balance in total knee arthroplasty: the elusive compromise[J]. J Arthroplasty, 2002, 17(1): 2-10.
|
[19] |
Mehliβ V, Strauch LM, Serrano OA, et al. Proven accuracy for a new dynamic gap measurement in navigated TKA[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(4): 1189-1195.
|
[20] |
Ishida K, Shibanuma N, Takayama K, et al. Posterior reference position affects intraoperative kinematic and soft tissue balance in navigated posterior-stabilized total knee arthroplasty[J]. J Arthroplasty, 2018, 33(9): 2851-2857.
|
[21] |
Stindel E, Briard JL, Merloz P, et al. Bone morphing: 3D morphological data for total knee arthroplasty[J]. Comput Aided Surg, 2002, 7(3): 156-168.
|
[22] |
Kamat YD, Aurakzai KM, Adhikari AR. Computer navigation of soft tissues in total knee replacement[J]. J Knee Surg, 2013, 26(3): 145-150.
|
[23] |
Matsumoto T, Kubo S, Muratsu H, et al. Different pattern in gap balancing between the cruciate-retaining and posterior-stabilized total knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2013, 21(10): 2338-2345.
|
[24] |
Joseph J, Simpson PM, Whitehouse SL, et al. The use of navigation to achieve soft tissue balance in total knee arthroplasty-a randomised clinical study[J]. Knee, 2013, 20(6): 401-406.
|
[25] |
Lee DH, Park JH, Song DI, et al. Accuracy of soft tissue balancing in TKA: comparison between navigation-assisted gap balancing and conventional measured resection[J]. Knee Surg Sports Traumatol Arthrosc, 2010, 18(3): 381-387.
|
[26] |
Mcclelland JA, Webster KE, Ramteke AA, et al. Total knee arthroplasty with computer-assisted navigation more closely replicates normal knee biomechanics than conventional surgery[J]. Knee, 2017, 24(3): 651-656.
|
[27] |
Petursson G, Fenstad AM, Gøthesen Ø, et al. Computer-assisted compared with conventional total knee replacement: a multicenter Parallel-Group randomized controlled trial[J]. J Bone Joint Surg Am, 2018, 100(15): 1265-1274.
|
[28] |
Panjwani TR, Mullaji A, Doshi K, et al. Comparison of functional outcomes of computer-assisted vs conventional total knee arthroplasty: a systematic review and meta-analysis of high-quality, prospective studies[J]. J Arthroplasty, 2019, 34(3): 586-593.
|
[29] |
Saragaglia D, Sigwalt L, Gaillot J, et al. Results with eight and a half years average follow-up on two hundred and eight e-Motion FP® knee prostheses, fitted using computer navigation for knee osteoarthritis in patients with over ten degrees genu varum[J]. Int Orthop, 2018, 42(4): 799-804.
|
[30] |
Baumbach JA, Willburger R, Haaker R, et al. 10-Year survival of navigated versus conventional TKAs: a retrospective study[J]. Orthopedics, 2016, 39(3 Suppl): S72-S76.
|
[31] |
Johnson DR, Dennis DA, Kindsfater KA, et al. Evaluation of total knee arthroplasty performed with and without computer navigation: a bilateral total knee arthroplasty study[J]. J Arthroplasty, 2013, 28(3): 455-458.
|
[32] |
Bellemans J. Neutral mechanical alignment: a requirement for successful TKA: opposes[J/OL]. Orthopedics, 2011, 34(9): e507-e509. doi: 10.3928/01477447-20110714-41.
|
[33] |
Parratte S, Pagnano MW, Trousdale RT, et al. Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements[J]. J Bone Joint Surg Am, 2010, 92(12): 2143-2149.
|
[34] |
Lang JE, Mannava S, Floyd AJ, et al. Robotic systems in orthopaedic surgery[J]. J Bone Joint Surg Br, 2011, 93(10): 1296-1299.
|
[35] |
Siddiqi A, Wm H, Eachempati KK, et al. Advances in computer-aided technology for total knee arthroplasty[J/OL]. Orthopedics, 2017, 40(6): 338-352. doi: 10.3928/01477447-20170831-02.
|
[36] |
Lonner JH, Smith JR, Picard F, et al. High degree of accuracy of a novel image-free handheld robot for unicondylar knee arthroplasty in a cadaveric study[J]. Clin Orthop Relat Res, 2015, 473(1): 206-212.
|
[37] |
Clark TC, Schmidt FH. Robot-assisted navigation versus computer-assisted navigation in primary total knee arthroplasty: efficiency and accuracy[J/OL]. ISRN Orthop, 2013, 2013: 794827.doi: 10.1155/2013/794827.
|
[38] |
Macdessi SJ, Jang B, Harris IA, et al. A comparison of alignment using patient specific guides, computer navigation and conventional instrumentation in total knee arthroplasty[J]. Knee, 2014, 21(2): 406-409.
|
[39] |
Gong S, Xu W, Wang R, et al. Patient-specific instrumentation improved axial alignment of the femoral component, operative time and perioperative blood loss after total knee arthroplasty[J]. Knee Surg Sports Traumatol Arthrosc, 2019, 27(4): 1083-1095.
|
[40] |
Gustke KA, Gj G, Roche MW, et al. Increased satisfaction after total knee replacement using sensor-guided technology[J]. Bone Joint J, 2014, 96-B(10): 1333-1338.
|
[41] |
Gustke KA, Gj G, Roche MW, et al. A targeted approach to ligament balancing using kinetic sensors[J]. J Arthroplasty, 2017, 32(7): 2127-2132.
|
[42] |
Tigani D, Masetti G, Sabbioni G, et al. Computer-assisted surgery as indication of choice: total knee arthroplasty in case of retained hardware or extra-articular deformity[J]. Int Orthop, 2012, 36(7): 1379-1385.
|
[43] |
Shetty GM, Mullaji AB, Bhayde S, et al. No effect of obesity on limb and component alignment after computer-assisted total knee arthroplasty[J]. Knee, 2014, 21(4): 862-865.
|
[44] |
AlcelikI A, Blomfield MI, Diana G, et al. A comparison of short-term outcomes of minimally invasive computer-assisted vs minimally invasive conventional instrumentation for primary total knee arthroplasty: a systematic review and meta-analysis[J]. J Arthroplasty, 2016, 31(2): 410-418.
|
[45] |
Zhu M, Ang CL, Yeo SJ, et al. Minimally invasive computer-assisted total knee arthroplasty compared with conventional total knee arthroplasty: a prospective 9-Year Follow-Up[J]. J Arthroplasty, 2016, 31(5): 1000-1004.
|