切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2019, Vol. 13 ›› Issue (02) : 213 -219. doi: 10.3877/cma.j.issn.1674-134X.2019.02.014

所属专题: 文献

综述

人工关节置换术后感染的生物治疗方法及前景
李朔1, 徐一宏1, 徐卫东1,()   
  1. 1. 200433 上海长海医院
  • 收稿日期:2018-08-30 出版日期:2019-04-01
  • 通信作者: 徐卫东

Methods and prospects for biologic treatment of infection after arthroplasty

Shuo Li1, Yihong Xu1, Weidong Xu1,()   

  1. 1. Changhai Hospital, Shanghai 200433, China
  • Received:2018-08-30 Published:2019-04-01
  • Corresponding author: Weidong Xu
  • About author:
    Corresponding author: Xu Weidong, Email:
引用本文:

李朔, 徐一宏, 徐卫东. 人工关节置换术后感染的生物治疗方法及前景[J]. 中华关节外科杂志(电子版), 2019, 13(02): 213-219.

Shuo Li, Yihong Xu, Weidong Xu. Methods and prospects for biologic treatment of infection after arthroplasty[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2019, 13(02): 213-219.

人工关节假体术后感染是骨科临床治疗的难点、热点。目前假体周围感染(PJI)的治疗方法包括保守治疗和手术治疗,但总的治疗效果不理想。PJI生物治疗是指利用新型杀菌/抑菌剂、生物工程、组织工程等方法,通过破坏生物膜、靶向杀灭致病菌、被动免疫以及局部缓释杀菌剂等方式对PJI进行治疗的新方法。它的出现有望解决PJI治疗存在的一系列难题。本文就近年来PJI生物治疗的研究进展及应用前景进行综述。

The treatment of prosthesis joint infection(PJI) is a great challenge in orthopedics. In general, the treatment of PJI includes conservative and surgical therapy, but the overall effect is unsatisfactory.The biotherapy of PJI is a new method to treat PJI by destructing bioflims, specifically killing pathogenic bacteria and activating passive immunity through noval antibiotics, bioengineering, tissue engineering, drug delivery system and other methods. It is expected to solve a series of problems existing in PJI treatment. This article reviewed the progress and application prospect of PJI biotherapy.

[1]
Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030[J]. J Bone Joint Surg Am, 2007, 89(4): 780-785.
[2]
Frank RM, Cross MB, Della Valle CJ. Periprosthetic joint infection: modern aspects of prevention, diagnosis, and treatment[J]. J Knee Surg, 2015, 28(2): 105-112.
[3]
Badihi HL, Sela MN, Steinberg D, et al. The adhesion of oral bacteria to modified titanium surfaces: role of plasma proteins and electrostatic forces[J]. Clin Oral Implants Res, 2013, 24(Suppl A), 100:49-56.
[4]
Rams TE, Degener JE. Van winkelhoff AJ. Antibiotic resistance in human peri-implantitis microbiota[J]. Clin Oral Implants Res, 2014, 25(1): 82-90.
[5]
Mcdougald D, Rice SA, Barraud N, et al. Should we stay or should we go:mechanisms and ecological Consequences for biofilm dispersal[J]. Nat Rev Microbiol, 2011, 10(1): 39-50.
[6]
Itoh Y, Wang X, Hinnebusch BJ, et al. Depolymerization of beta-1, 6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms[J]. J Bacteriol, 2005, 187(1): 382-387.
[7]
Chaignon P, Sadovskaya I, Ragunah C, et al. Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition[J]. Appl Microbiol Biotechnol, 2007, 75(1): 125-132.
[8]
Fekete A, Borbás A, Gyémánt G, et al. Synthesis of beta-(1→6)-linked N-acetyl-D-glucosamine oligosaccharide substrates and their hydrolysis by Dispersin B[J]. Carbohydr Res, 2011, 346(12): 1445-1453.
[9]
Kerrigan JE, Ragunath C, Kandra L, et al. Modeling and biochemical analysis of the activity of antibiofilm agent Dispersin B[J]. Acta Biol Hung, 2008, 59(4): 439-451.
[10]
Kaplan JB, Ragunath C, Ramasubbu N, et al. Detachment of actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity[J]. J Bacteriol, 2003, 185(16): 4693-4698.
[11]
Ragunath C, Difranco K, Shanmugam M, et al. Surface display of aggregatibacter actinomycetemcomitans autotransporter Aae and dispersin B hybrid act as antibiofilm agents[J]. Mol Oral Microbiol, 2016, 31(4): 329-339.
[12]
Kaplan JB, Ragunath C, Velliyagounder K, et al. Enzymatic detachment of staphylococcus epidermidis biofilms[J]. Antimicrob Agents Chemother, 2004, 48(7): 2633-2636.
[13]
Hogan S, Zapotoczna M, Stevens NT, et al. Potential use of targeted enzymatic agents in the treatment of Staphylococcus aureus biofilm-related infections[J]. J Hosp Infect, 2017, 96(2): 177-182.
[14]
Darouiche RO, Mansouri MD, Gawande PV, et al. Antimicrobial and antibiofilm efficacy of triclosan and DispersinB (R) combination[J]. J Antimicrob Chemother 2009, 64(1): 88-93.
[15]
Donelli G, Francolini I, Romoli D, et al. Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes[J]. Antimicrob Agents Chemother, 2007, 51(8): 2733-2740.
[16]
Kolodkin-Gal I, Romero D, Cao S, et al. D-amino acids trigger biofilm disassembly[J]. Science, 2010, 328(5978): 627-629.
[17]
Cava F, De Pedro MA, Lam H, et al. Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids[J]. EMBO J, 2011, 30(16): 3442-3453.
[18]
Miyamoto T, Katane M, Saitoh Y, et al. Cystathionine beta-lyase is involved in D-amino acid metabolism[J]. Biochem J, 2018, 475(8): 1397-1410.
[19]
Sanchez J, Akers KS, Romano DR, et al. D-Amino acids enhance the activity of antimicrobials against biofilms of clinical wound isolates of staphylococcus aureus and pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2014, 58(8): 4353-4361.
[20]
夏文颖,王珏,金菲,等. 甜菜碱对铜绿假单胞菌生物膜形成与分散及耐药性的影响[J]. 临床检验杂志,2017,(4):258-260.
[21]
金菲,文怡,许雨乔,等. 甜菜碱对金黄色葡萄球菌生物膜形成抑制与分散的作用[J]. 临床检验杂志,2017,(4):261-263.
[22]
Wattanaploy S, Chinaroonchai K, Namviriyachote N, et al. Randomized controlled trial of polyhexanide/betaine gel versus silver sulfadiazine for partial-thickness burn treatment[J]. Int J Low Extrem Wounds, 2017, 16(1): 45-50.
[23]
Bahar AA, Ren D. Antimicrobial peptides[J]. Pharmaceuticals (Basel), 2013, 6(12): 1543-1575.
[24]
Mishra B, Golla RM, Lau K, et al. Anti-staphylococcal biofilm effects of human cathelicidin peptides[J]. ACS Med Chem Lett, 2016, 7(1): 117-121.
[25]
Singh PK, Parsek MR, Greenberg EP, et al. A component of innate immunity prevents bacterial biofilm development[J]. Nature, 2002, 417(6888): 552-555.
[26]
Chen X, Hirt H, Li YP, et al. Antimicrobial GL13K peptide coatings killed and ruptured the wall of streptococcus gordonii and prevented formation and growth of biofilms[J/OL]. PLoS One, 2014, 9(11): e111579. doi: 10.1371/journal.pone.0111579.
[27]
Overhage J, Campisano A, Bains M, et al. Human host defense peptide LL-37 prevents bacterial biofilm formation[J]. Infect Immun, 2008, 76(9): 4176-4182.
[28]
Millenbaugh NJ, Baskin JB, DeSilva MN, et al. Photothermal killing of staphylococcus aureus using antibody-targeted gold nanoparticles[J]. Int J Nanomedicine, 2015, 10:1953-1960.
[29]
Taha M, Abdelbary H, Ross FP, et al. New Innovations in the Treatment of PJI and Biofilms-Clinical and Preclinical Topics[J]. Curr Rev Musculoskelet Med, 2018, 11(3):380-388.
[30]
Ceotto-Vigoder H, Marques SL, Santos IN, et al. Nisin and lysostaphin activity against preformed biofilm of staphylococcus aureus involved in bovine mastitis[J]. J Appl Microbiol, 2016, 121(1): 101-114.
[31]
Satishkumar R, Vertegel AA. Antibody-directed targeting of lysostaphin adsorbed onto polylactide nanoparticles increases its antimicrobial activity against S. aureus in vitro[J]. Nanotechnology, 2011, 22(50): 505103.
[32]
Chen H, Liu C, Chen D, et al. Bacteria-targeting conjugates based on antimicrobial peptide for bacteria diagnosis and therapy[J]. Mol Pharm, 2015, 12(7): 2505-2516.
[33]
Akanda ZZ, Taha M, Abdelbary H. Current review-the rise of bacteriophage as a unique therapeutic platform in treating peri-prosthetic joint infections[J]. J Orthop Res, 2018, 36(4): 1051-1060.
[34]
Kaur S, Harjai K, Chhibber S. In vivo assessment of phage and linezolid based implant coatings for treatment of methicillin resistant S. aureus (MRSA) mediated orthopaedic device related infections[J/OL]. PLoS One, 2016, 11(6): e0157626. doi: 10.1371/journal.pone.0157626.
[35]
Rhoads DD, Wolcott RD, Kuskowski MA, et al. Bacteriophage therapy of venous leg ulcers in humans: results of a phase Ⅰ safety trial[J]. J Wound Care, 2009, 18(6): 237-238, 240-3.
[36]
Rose T, Verbeken G, Vos DD, et al. Experimental phage therapy of burn wound infection:difficult first steps[J]. Int J Burns Trauma, 2014, 4(2): 66-73.
[37]
Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage[J]. Proc Natl Acad Sci USA, 2007, 104(27): 11197-11202.
[38]
Schaffer AC, Lee JC. Vaccination and passive immunisation against Staphylococcus aureus[J]. Int J Antimicrob Agents, 2008, 32(1): S71-S78.
[39]
Fowler VG, Allen KB, Moreira ED, et al. Effect of an investigational vaccine for preventing staphylococcus aureus infections after cardiothoracic surgery: a randomized trial[J]. JAMA, 2013, 309(13): 1368-1378.
[40]
Proctor RA. Challenges for a universal staphylococcus aureus vaccine[J]. Clin Infect Dis, 2012, 54(8): 1179-1186.
[41]
Varrone JJ, Bentley KL, Bello-Irizarry SN, et al. Passive immunization with anti-glucosaminidase monoclonal antibodies protects mice from implant-associated osteomyelitis by mediating opsonophagocytosis of staphylococcus aureus megaclusters[J]. J Orthop Res, 2014, 32(10): 1389-1396.
[42]
Berbari EF, Osmon DR, Lahr B, et al. The Mayo prosthetic joint infection risk score: implication for surgical site infection reporting and risk stratification[J]. Infect Control Hosp Epidemiol, 2012, 33(8): 774-781.
[43]
Etz H, Minh DB, Henics T, et al. Identification of in vivo expressed vaccine candidate antigens from Staphylococcus aureus[J]. Proc Natl Acad Sci USA, 2002, 99(10): 6573-6578.
[44]
Varrone JJ, De MK, Bello-Irizarry SN, et al. Passive immunization with anti-glucosaminidase monoclonal antibodies protects mice from implant-associated osteomyelitis by mediating opsonophagocytosis of staphylococcus aureus megaclusters[J]. J Orthop Res, 2014, 32(10): 1389-1396.
[45]
Brady RA, O’may GA, Leid JG, et al. Resolution of staphylococcus aureus biofilm infection using vaccination and antibiotic treatment[J]. Infect Immun, 2011, 79(4): 1797-1803.
[46]
Han F, Dong Y, Su Z, et al. Preparation, characteristics and assessment of a novel gelatin-chitosan sponge scaffold as skin tissue engineering material[J]. Int J Pharm, 2014, 476(1/2): 124-133.
[47]
Kilian O, Hossain H, Flesch I, et al. Elution kinetics, antimicrobial efficacy, and degradation and microvasculature of a new gentamicin-loaded collagen fleece[J]. J Biomed Mater Res B Appl Biomater, 2009, 90(1): 210-222.
[48]
ter Boo GJ, Grijpma DW, Moriarty TF, et al. Antimicrobial delivery systems for local infection prophylaxis in orthopedic-and trauma surgery[J]. Biomaterials, 2015, 52:113-125.
[49]
Trial J, Potempa LA, Entman ML. The role of C-reactive protein in innate and acquired inflammation: new perspectives[J/OL]. Inflamm Cell Signal, 2016, 3(2):e1409.

URL    
[50]
Issekutz AC, Bhimji S. Role for endotoxin in the leukocyte infiltration accompanying Escherichia coli inflammation[J]. Infect Immun, 1982, 36(2): 558-566.
[51]
Pavlukhina S, Lu YM, Patimetha A, et al. Polymer multilayers with pH-triggered release of antibacterial agents[J]. Biomacromolecules, 2010, 11(12): 3448-3456.
[52]
Pichavant L, Amador G, Jacqueline CA, et al. pH-controlled delivery of gentamicin sulfate from orthopedic devices preventing nosocomial infections[J]. J Control Rel, 2012, 162(2): 373-381.
[53]
Walter MS, Frank MJ, Satue M, et al. Bioactive implant surface with electrochemically bound doxycycline promotes bone formation markers in vitro and in vivo[J]. Dent Mater, 2014, 30(2): 200-214.
[54]
Peng ZX, Tu B, Shen Y, et al. Quaternized chitosan inhibits icaA transcription and biofilm formation by staphylococcus on a titanium surface[J]. Antimicrob Agents Chemother, 2011, 55(2): 860-866.
[55]
Hickok NJ, Shapiro IM. Immobilized antibiotics to prevent orthopaedic implant infections[J]. Adv Drug Deliv Rev, 2012, 64(12): 1165-1176.
[56]
Getzlaf MA, Lewallen EA, Kremers HM, et al. Multi-disciplinary antimicrobial strategies for improving orthopaedic implants to prevent prosthetic joint infections in hip and knee[J]. J Orthop Res, 2016, 34(2): 177-186.
[57]
Taha M, Abdelbary H, Ross FP, et al. New Innovations in the treatment of PJI and biofilms-clinical and preclinical topics[J]. Curr Rev Musculoskelet Med, 2018, 11(3):380-388.
[58]
Roy M, Fielding GA, Beyenal H, et al. Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating[J]. ACS Appl Mater Interfaces, 2012, 4(3): 1341-1349.
[59]
Sahithi K, Swetha M, Prabaharan M, et al. Synthesis and characterization of nanoscale-hydroxyapatite-copper for antimicrobial activity towards bone tissue engineering applications[J]. J Biomed Nanotechnol, 2010, 6(4): 333-339.
[60]
Drago L, Boot W, Dimas K, et al. Does implant coating with antibacterial-loaded hydrogel reduce bacterial colonization and biofilm formation in vitro?[J]. Clin Orthop Relat Res, 2014, 472(11): 3311-3323.
[61]
Boot W, Gawlitta D, Nikkels P, et al. Hyaluronic acid-based hydrogel coating does not affect bone apposition at the implant surface in a rabbit model[J]. Clin Orthop Relat Res, 2017, 475(7): 1911-1919.
[62]
Malizos K, Blauth M, Danita A, et al. Fast-resorbable antibiotic-loaded hydrogel coating to reduce post-surgical infection after internal osteosynthesis:a multicenter randomized controlled trial[J]. J Orthop Traumatol, 2017, 18(2): 159-169.
[63]
Romano C L, Malizos K, Capuano N, et al. Does an antibiotic-loaded hydrogel coating reduce early post-surgical infection after joint arthroplasty?[J]. J Bone Jt Infect, 2016, 1:34-41.
[64]
Ambrose CG, Clyburn TA, Mika J, et al. Evaluation of antibiotic-impregnated microspheres for the prevention of implant-associated orthopaedic infections[J]. J Bone Joint Surg Am, 2014, 96A(2): 128-134.
[65]
Marczak D, Synder M, Sibinski M, et al. The use of calcium carbonate beads containing gentamicin in the second stage septic revision of total knee arthroplasty reduces reinfection rate[J]. Knee, 2016, 23(2): 322-326.
[66]
艾承冲,蒋佳,陈世益. 超高分子量聚乙烯在骨科领域的应用及基础研究进展[J]. 复旦学报(医学版), 2016,43(6):717-723.
[67]
Suhardi V J, Bichara D A, Kwok S, et al. A fully functional drug-eluting joint implant[J/OL]. Nat Biomed Eng, 2017, 1: 0080. doi: 10.1038/s41551-017-0080.
[1] 林文, 王雨萱, 许嘉悦, 王矜群, 王睿娜, 何董源, 樊沛. 人工关节置换登记系统的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 834-841.
[2] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[3] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[4] 杨瑞洲, 李国栋, 吴向阳. 腹股沟疝术后感染的治疗方法探讨[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 715-719.
[5] 徐金林, 陈征. 抗菌药物临床应用监测对腹股沟疝修补术预防用药及感染的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 720-723.
[6] 李静如, 王江玲, 吴向阳. 简易负压引流在腹股沟疝术后浅部感染中的疗效分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 745-749.
[7] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[8] 赵立力, 王魁向, 张小冲, 李志远. 血沉与C-反应蛋白比值在假体周围感染中的诊断价值分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 351-355.
[9] 卓少宏, 林秀玲, 周翠梅, 熊卫莲, 马兴灶. CD64指数、SAA/CRP、PCT联合检测在小儿消化道感染性疾病鉴别诊断中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 505-509.
[10] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[11] 李达, 张大涯, 陈润祥, 张晓冬, 黄士美, 陈晨, 曾凡, 陈世锔, 白飞虎. 海南省东方市幽门螺杆菌感染现状的调查与相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 858-864.
[12] 卓徐鹏, 刘颖, 任菁菁. 感染性疾病与老年人低蛋白血症的相关性研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 896-899.
[13] 李琪, 黄钟莹, 袁平, 关振鹏. 基于某三级医院的ICU多重耐药菌医院感染影响因素的分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 777-782.
[14] 杨艳丽, 陈昱, 赵若辰, 杜伟, 马海娟, 许珂, 张莉芸. 系统性红斑狼疮合并血流感染的危险因素及细菌学分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 694-699.
[15] 田丹阳, 刘小璇, 叶珊, 马新然, 樊东升, 傅瑜. 新型冠状病毒感染疫情对神经内科住院医师规范化培训的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 499-504.
阅读次数
全文


摘要