[1] |
Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030[J]. J Bone Joint Surg Am, 2007, 89(4): 780-785.
|
[2] |
Frank RM, Cross MB, Della Valle CJ. Periprosthetic joint infection: modern aspects of prevention, diagnosis, and treatment[J]. J Knee Surg, 2015, 28(2): 105-112.
|
[3] |
Badihi HL, Sela MN, Steinberg D, et al. The adhesion of oral bacteria to modified titanium surfaces: role of plasma proteins and electrostatic forces[J]. Clin Oral Implants Res, 2013, 24(Suppl A), 100:49-56.
|
[4] |
Rams TE, Degener JE. Van winkelhoff AJ. Antibiotic resistance in human peri-implantitis microbiota[J]. Clin Oral Implants Res, 2014, 25(1): 82-90.
|
[5] |
Mcdougald D, Rice SA, Barraud N, et al. Should we stay or should we go:mechanisms and ecological Consequences for biofilm dispersal[J]. Nat Rev Microbiol, 2011, 10(1): 39-50.
|
[6] |
Itoh Y, Wang X, Hinnebusch BJ, et al. Depolymerization of beta-1, 6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms[J]. J Bacteriol, 2005, 187(1): 382-387.
|
[7] |
Chaignon P, Sadovskaya I, Ragunah C, et al. Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition[J]. Appl Microbiol Biotechnol, 2007, 75(1): 125-132.
|
[8] |
Fekete A, Borbás A, Gyémánt G, et al. Synthesis of beta-(1→6)-linked N-acetyl-D-glucosamine oligosaccharide substrates and their hydrolysis by Dispersin B[J]. Carbohydr Res, 2011, 346(12): 1445-1453.
|
[9] |
Kerrigan JE, Ragunath C, Kandra L, et al. Modeling and biochemical analysis of the activity of antibiofilm agent Dispersin B[J]. Acta Biol Hung, 2008, 59(4): 439-451.
|
[10] |
Kaplan JB, Ragunath C, Ramasubbu N, et al. Detachment of actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity[J]. J Bacteriol, 2003, 185(16): 4693-4698.
|
[11] |
Ragunath C, Difranco K, Shanmugam M, et al. Surface display of aggregatibacter actinomycetemcomitans autotransporter Aae and dispersin B hybrid act as antibiofilm agents[J]. Mol Oral Microbiol, 2016, 31(4): 329-339.
|
[12] |
Kaplan JB, Ragunath C, Velliyagounder K, et al. Enzymatic detachment of staphylococcus epidermidis biofilms[J]. Antimicrob Agents Chemother, 2004, 48(7): 2633-2636.
|
[13] |
Hogan S, Zapotoczna M, Stevens NT, et al. Potential use of targeted enzymatic agents in the treatment of Staphylococcus aureus biofilm-related infections[J]. J Hosp Infect, 2017, 96(2): 177-182.
|
[14] |
Darouiche RO, Mansouri MD, Gawande PV, et al. Antimicrobial and antibiofilm efficacy of triclosan and DispersinB (R) combination[J]. J Antimicrob Chemother 2009, 64(1): 88-93.
|
[15] |
Donelli G, Francolini I, Romoli D, et al. Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes[J]. Antimicrob Agents Chemother, 2007, 51(8): 2733-2740.
|
[16] |
Kolodkin-Gal I, Romero D, Cao S, et al. D-amino acids trigger biofilm disassembly[J]. Science, 2010, 328(5978): 627-629.
|
[17] |
Cava F, De Pedro MA, Lam H, et al. Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids[J]. EMBO J, 2011, 30(16): 3442-3453.
|
[18] |
Miyamoto T, Katane M, Saitoh Y, et al. Cystathionine beta-lyase is involved in D-amino acid metabolism[J]. Biochem J, 2018, 475(8): 1397-1410.
|
[19] |
Sanchez J, Akers KS, Romano DR, et al. D-Amino acids enhance the activity of antimicrobials against biofilms of clinical wound isolates of staphylococcus aureus and pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2014, 58(8): 4353-4361.
|
[20] |
夏文颖,王珏,金菲,等. 甜菜碱对铜绿假单胞菌生物膜形成与分散及耐药性的影响[J]. 临床检验杂志,2017,(4):258-260.
|
[21] |
金菲,文怡,许雨乔,等. 甜菜碱对金黄色葡萄球菌生物膜形成抑制与分散的作用[J]. 临床检验杂志,2017,(4):261-263.
|
[22] |
Wattanaploy S, Chinaroonchai K, Namviriyachote N, et al. Randomized controlled trial of polyhexanide/betaine gel versus silver sulfadiazine for partial-thickness burn treatment[J]. Int J Low Extrem Wounds, 2017, 16(1): 45-50.
|
[23] |
Bahar AA, Ren D. Antimicrobial peptides[J]. Pharmaceuticals (Basel), 2013, 6(12): 1543-1575.
|
[24] |
Mishra B, Golla RM, Lau K, et al. Anti-staphylococcal biofilm effects of human cathelicidin peptides[J]. ACS Med Chem Lett, 2016, 7(1): 117-121.
|
[25] |
Singh PK, Parsek MR, Greenberg EP, et al. A component of innate immunity prevents bacterial biofilm development[J]. Nature, 2002, 417(6888): 552-555.
|
[26] |
Chen X, Hirt H, Li YP, et al. Antimicrobial GL13K peptide coatings killed and ruptured the wall of streptococcus gordonii and prevented formation and growth of biofilms[J/OL]. PLoS One, 2014, 9(11): e111579. doi: 10.1371/journal.pone.0111579.
|
[27] |
Overhage J, Campisano A, Bains M, et al. Human host defense peptide LL-37 prevents bacterial biofilm formation[J]. Infect Immun, 2008, 76(9): 4176-4182.
|
[28] |
Millenbaugh NJ, Baskin JB, DeSilva MN, et al. Photothermal killing of staphylococcus aureus using antibody-targeted gold nanoparticles[J]. Int J Nanomedicine, 2015, 10:1953-1960.
|
[29] |
Taha M, Abdelbary H, Ross FP, et al. New Innovations in the Treatment of PJI and Biofilms-Clinical and Preclinical Topics[J]. Curr Rev Musculoskelet Med, 2018, 11(3):380-388.
|
[30] |
Ceotto-Vigoder H, Marques SL, Santos IN, et al. Nisin and lysostaphin activity against preformed biofilm of staphylococcus aureus involved in bovine mastitis[J]. J Appl Microbiol, 2016, 121(1): 101-114.
|
[31] |
Satishkumar R, Vertegel AA. Antibody-directed targeting of lysostaphin adsorbed onto polylactide nanoparticles increases its antimicrobial activity against S. aureus in vitro[J]. Nanotechnology, 2011, 22(50): 505103.
|
[32] |
Chen H, Liu C, Chen D, et al. Bacteria-targeting conjugates based on antimicrobial peptide for bacteria diagnosis and therapy[J]. Mol Pharm, 2015, 12(7): 2505-2516.
|
[33] |
Akanda ZZ, Taha M, Abdelbary H. Current review-the rise of bacteriophage as a unique therapeutic platform in treating peri-prosthetic joint infections[J]. J Orthop Res, 2018, 36(4): 1051-1060.
|
[34] |
Kaur S, Harjai K, Chhibber S. In vivo assessment of phage and linezolid based implant coatings for treatment of methicillin resistant S. aureus (MRSA) mediated orthopaedic device related infections[J/OL]. PLoS One, 2016, 11(6): e0157626. doi: 10.1371/journal.pone.0157626.
|
[35] |
Rhoads DD, Wolcott RD, Kuskowski MA, et al. Bacteriophage therapy of venous leg ulcers in humans: results of a phase Ⅰ safety trial[J]. J Wound Care, 2009, 18(6): 237-238, 240-3.
|
[36] |
Rose T, Verbeken G, Vos DD, et al. Experimental phage therapy of burn wound infection:difficult first steps[J]. Int J Burns Trauma, 2014, 4(2): 66-73.
|
[37] |
Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage[J]. Proc Natl Acad Sci USA, 2007, 104(27): 11197-11202.
|
[38] |
Schaffer AC, Lee JC. Vaccination and passive immunisation against Staphylococcus aureus[J]. Int J Antimicrob Agents, 2008, 32(1): S71-S78.
|
[39] |
Fowler VG, Allen KB, Moreira ED, et al. Effect of an investigational vaccine for preventing staphylococcus aureus infections after cardiothoracic surgery: a randomized trial[J]. JAMA, 2013, 309(13): 1368-1378.
|
[40] |
Proctor RA. Challenges for a universal staphylococcus aureus vaccine[J]. Clin Infect Dis, 2012, 54(8): 1179-1186.
|
[41] |
Varrone JJ, Bentley KL, Bello-Irizarry SN, et al. Passive immunization with anti-glucosaminidase monoclonal antibodies protects mice from implant-associated osteomyelitis by mediating opsonophagocytosis of staphylococcus aureus megaclusters[J]. J Orthop Res, 2014, 32(10): 1389-1396.
|
[42] |
Berbari EF, Osmon DR, Lahr B, et al. The Mayo prosthetic joint infection risk score: implication for surgical site infection reporting and risk stratification[J]. Infect Control Hosp Epidemiol, 2012, 33(8): 774-781.
|
[43] |
Etz H, Minh DB, Henics T, et al. Identification of in vivo expressed vaccine candidate antigens from Staphylococcus aureus[J]. Proc Natl Acad Sci USA, 2002, 99(10): 6573-6578.
|
[44] |
Varrone JJ, De MK, Bello-Irizarry SN, et al. Passive immunization with anti-glucosaminidase monoclonal antibodies protects mice from implant-associated osteomyelitis by mediating opsonophagocytosis of staphylococcus aureus megaclusters[J]. J Orthop Res, 2014, 32(10): 1389-1396.
|
[45] |
Brady RA, O’may GA, Leid JG, et al. Resolution of staphylococcus aureus biofilm infection using vaccination and antibiotic treatment[J]. Infect Immun, 2011, 79(4): 1797-1803.
|
[46] |
Han F, Dong Y, Su Z, et al. Preparation, characteristics and assessment of a novel gelatin-chitosan sponge scaffold as skin tissue engineering material[J]. Int J Pharm, 2014, 476(1/2): 124-133.
|
[47] |
Kilian O, Hossain H, Flesch I, et al. Elution kinetics, antimicrobial efficacy, and degradation and microvasculature of a new gentamicin-loaded collagen fleece[J]. J Biomed Mater Res B Appl Biomater, 2009, 90(1): 210-222.
|
[48] |
ter Boo GJ, Grijpma DW, Moriarty TF, et al. Antimicrobial delivery systems for local infection prophylaxis in orthopedic-and trauma surgery[J]. Biomaterials, 2015, 52:113-125.
|
[49] |
Trial J, Potempa LA, Entman ML. The role of C-reactive protein in innate and acquired inflammation: new perspectives[J/OL]. Inflamm Cell Signal, 2016, 3(2):e1409.
URL
|
[50] |
Issekutz AC, Bhimji S. Role for endotoxin in the leukocyte infiltration accompanying Escherichia coli inflammation[J]. Infect Immun, 1982, 36(2): 558-566.
|
[51] |
Pavlukhina S, Lu YM, Patimetha A, et al. Polymer multilayers with pH-triggered release of antibacterial agents[J]. Biomacromolecules, 2010, 11(12): 3448-3456.
|
[52] |
Pichavant L, Amador G, Jacqueline CA, et al. pH-controlled delivery of gentamicin sulfate from orthopedic devices preventing nosocomial infections[J]. J Control Rel, 2012, 162(2): 373-381.
|
[53] |
Walter MS, Frank MJ, Satue M, et al. Bioactive implant surface with electrochemically bound doxycycline promotes bone formation markers in vitro and in vivo[J]. Dent Mater, 2014, 30(2): 200-214.
|
[54] |
Peng ZX, Tu B, Shen Y, et al. Quaternized chitosan inhibits icaA transcription and biofilm formation by staphylococcus on a titanium surface[J]. Antimicrob Agents Chemother, 2011, 55(2): 860-866.
|
[55] |
Hickok NJ, Shapiro IM. Immobilized antibiotics to prevent orthopaedic implant infections[J]. Adv Drug Deliv Rev, 2012, 64(12): 1165-1176.
|
[56] |
Getzlaf MA, Lewallen EA, Kremers HM, et al. Multi-disciplinary antimicrobial strategies for improving orthopaedic implants to prevent prosthetic joint infections in hip and knee[J]. J Orthop Res, 2016, 34(2): 177-186.
|
[57] |
Taha M, Abdelbary H, Ross FP, et al. New Innovations in the treatment of PJI and biofilms-clinical and preclinical topics[J]. Curr Rev Musculoskelet Med, 2018, 11(3):380-388.
|
[58] |
Roy M, Fielding GA, Beyenal H, et al. Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating[J]. ACS Appl Mater Interfaces, 2012, 4(3): 1341-1349.
|
[59] |
Sahithi K, Swetha M, Prabaharan M, et al. Synthesis and characterization of nanoscale-hydroxyapatite-copper for antimicrobial activity towards bone tissue engineering applications[J]. J Biomed Nanotechnol, 2010, 6(4): 333-339.
|
[60] |
Drago L, Boot W, Dimas K, et al. Does implant coating with antibacterial-loaded hydrogel reduce bacterial colonization and biofilm formation in vitro?[J]. Clin Orthop Relat Res, 2014, 472(11): 3311-3323.
|
[61] |
Boot W, Gawlitta D, Nikkels P, et al. Hyaluronic acid-based hydrogel coating does not affect bone apposition at the implant surface in a rabbit model[J]. Clin Orthop Relat Res, 2017, 475(7): 1911-1919.
|
[62] |
Malizos K, Blauth M, Danita A, et al. Fast-resorbable antibiotic-loaded hydrogel coating to reduce post-surgical infection after internal osteosynthesis:a multicenter randomized controlled trial[J]. J Orthop Traumatol, 2017, 18(2): 159-169.
|
[63] |
Romano C L, Malizos K, Capuano N, et al. Does an antibiotic-loaded hydrogel coating reduce early post-surgical infection after joint arthroplasty?[J]. J Bone Jt Infect, 2016, 1:34-41.
|
[64] |
Ambrose CG, Clyburn TA, Mika J, et al. Evaluation of antibiotic-impregnated microspheres for the prevention of implant-associated orthopaedic infections[J]. J Bone Joint Surg Am, 2014, 96A(2): 128-134.
|
[65] |
Marczak D, Synder M, Sibinski M, et al. The use of calcium carbonate beads containing gentamicin in the second stage septic revision of total knee arthroplasty reduces reinfection rate[J]. Knee, 2016, 23(2): 322-326.
|
[66] |
艾承冲,蒋佳,陈世益. 超高分子量聚乙烯在骨科领域的应用及基础研究进展[J]. 复旦学报(医学版), 2016,43(6):717-723.
|
[67] |
Suhardi V J, Bichara D A, Kwok S, et al. A fully functional drug-eluting joint implant[J/OL]. Nat Biomed Eng, 2017, 1: 0080. doi: 10.1038/s41551-017-0080.
|