[1] |
傅栋, 靳安民. 应用CT断层图像快速构建人体骨骼有限元几何模型的方法[J]. 中国组织工程研究与临床康复, 2007, 11( 9 ):1620-1623.
|
[2] |
宋红芳, 张庆明, 刘志成. 基于CT图像的人体股骨上段有限元模型的建立[J]. 医疗设备信息, 2006, 21( 12 ): 1-3.
|
[3] |
金哲峰, 刘爱峰, 王平, 等. 膝关节骨性关节炎生物力学模型及其软骨表面应力分析[J]. 中国组织工程研究, 2015, 19( 29 ):4629-4633.
|
[4] |
靳龙, 胡迎春, 靳剑桥, 等. 基于Mimics和Ansys的人体膝关节生物力学分析[J]. 计算机应用与软件, 2014, 31( 6 ): 208-212.
|
[5] |
张宇, 郝智秀, 金德闻, 等. 基于磁共振图像的人体膝关节三维模型的建立[J]. 中国康复医学杂志, 2007, 22( 4 ): 339-342.
|
[6] |
Hopkins AR, New AM, Rodriguez-y-Baena F, et al. Finite element analysis of unicompartmental knee arthroplasty[J]. Med Eng Phys,2010, 32( 1 ): 14-21.
|
[7] |
董跃福, 牟志芳, 蒋胜波, 等. 全膝关节置换术膝关节有限元模型的构建及其力学分析[J]. 医学研究生学报, 2017, 30( 8 ):839-843.
|
[8] |
Korkmaz İH, Kaymaz İ, Yıldırım ÖS, et al. Designing and in vitro testing of a novel patient-specific total knee prosthesis using the probabilistic approach[J]. Biomed Tech, 2022, 67( 4 ): 295-305.
|
[9] |
Innocenti B, Pianigiani S, Ramundo G, et al. Biomechanical effects of different varus and valgus alignments in medial unicompartmental knee arthroplasty[J]. J Arthroplasty, 2016, 31( 12 ): 2685-2691.
|
[10] |
汤小勇, 李晓虎, 谷雪莲, 等. 基于人工智能的膝关节自动建模研究[J]. 中国修复重建外科杂志, 2023, 37( 3 ): 348-352.
|
[11] |
Shin DS, Lee S, Park HS, et al. Segmentation and surface reconstruction of a cadaver heart on Mimics software[J]. Folia Morphol, 2015, 74( 3 ): 372-377.
|
[12] |
尹庆水, 万磊. Simpleware软件功能及其在数字骨科的应用数字骨科入门( 三 )[J]. 中国骨科临床与基础研究杂志, 2010, 2( 1 ):72-74.
|
[13] |
林暐哲, 陈文钧, 许耀, 等. 新型钉棒系统治疗股骨颈骨折的三维有限元分析[J]. 上海医学, 2018, 41( 11 ): 672-675.
|
[14] |
杨明杰, 曾诚, 李立钧, 等. 腰椎椎间孔外椎体间融合术的三维有限元建模及分析[J]. 同济大学学报( 医学版 ), 2018, 39( 3 ):41-47.
|
[15] |
胡晓晖, 洪翔, 何冰凡, 等. 基于Simpleware全颈椎三维有限元模型的构建与分析[J]. 医用生物力学, 2014, 29( 6 ): 530-535.
|
[16] |
王彩梅, 毛恩荣, 周殿阁, 等. 个体化人工膝关节假体的计算机辅助设计[J]. 中国组织工程研究与临床康复, 2008, 12( 44 ):8661-8665.
|
[17] |
Galbusera F, Freutel M, Dürselen L, et al. Material models and properties in the finite element analysis of knee ligaments: a literature review[J/OL]. Front Bioeng Biotechnol, 2014, 2: 54.DOI:10.3389/fbioe.2014.00054.
|
[18] |
Burkhart TA, Andrews DM, Dunning CE. Finite element modeling mesh quality, energy balance and validation methods: a review with recommendations associated with the modeling of bone tissue[J]. J Biomech, 2013, 46( 9 ): 1477-1488.
|
[19] |
Keul C, Güth JF. Accuracy of full-arch digital impressions: an in vitro and in vivocomparison[J]. Clin Oral Investig, 2020, 24( 2 ):735-745.
|
[20] |
Makowski K, Okrasa M. Application of 3D scanning and 3D printing for designing and fabricating customized half-mask facepieces: a pilot study[J]. Work, 2019, 63( 1 ): 125-135.
|
[21] |
Nie Y, Yu Q, Shen B. Impact of tibial component coronal alignment on knee joint biomechanics following fixed-bearing unicompartmental knee arthroplasty: a finite element analysis[J].Orthop Surg, 2021, 13( 4 ): 1423-1429.
|
[22] |
高辉, 王晨艳, 李志, 等. 不同屈曲状态下固定轴和移动轴膝关节胫-股关节的生物力学变化[J]. 太原理工大学学报, 2021,52( 1 ): 144-150.
|
[23] |
李红莉, 何柏海, 郭恒亚. 逆向工程中曲面重构的应用软件研究[J]. 科技资讯, 2009, 7( 1 ): 41, 43.
|
[24] |
李晓淼, 沈奕, 王伟力. 全膝关节假体三维有限元模型的建立[J]. 中国组织工程研究与临床康复, 2011, 15( 13 ): 2304-2308.
|
[25] |
朱广铎, 郭万首, 程立明, 等. 活动平台单髁膝关节置换胫骨后倾的有限元分析[J]. 中国组织工程研究, 2015, 19( 44 ): 7156-7162.
|
[26] |
朱广铎, 郭万首, 程立明, 等. 活动平台单髁膝关节置换三维有限元模型的建立[J]. 中国矫形外科杂志, 2015, 23( 21 ): 1994-1998.
|
[27] |
Zhu GD, Guo WS, Zhang QD, et al. Finite element analysis of mobile-bearing unicompartmental knee arthroplasty: the influence of tibial component coronal alignment[J]. Chin Med J, 2015, 128( 21 ):2873-2878.
|
[28] |
Zhang JY, Tian DM, Ren ZP, et al. Influence of congruency design on the contact stress of a novel hinged knee prosthesis using finite element analysis[J]. Orthop Surg, 2020, 12( 2 ): 631-638.
|
[29] |
石更强. 基于UG6.0NX NASTRAN人工仿生膝关节应力分析[J].生物医学工程学杂志, 2014, 31( 1 ): 128-131.
|
[30] |
Wang Y, Chen W, Zhang L, et al. Finite element analysis of proximal femur bionic nail ( PFBN ) compared with proximal femoral nail antirotation and InterTan in treatment of intertrochanteric fractures[J]. Orthop Surg, 2022, 14( 9 ): 2245-2255.
|
[31] |
Ding K, Zhu Y, Li Y, et al. Triangular support intramedullary nail: a new internal fixation innovation for treating intertrochanteric fracture and its finite element analysis[J]. Injury, 2022, 53( 6 ): 1796-1804.
|
[32] |
Wang G, Tang Y, Wu X, et al. Finite element analysis of a new plate for Pauwels type III femoral neck fractures[J/OL]. J Int Med Res, 2020, 48( 2 ): 300060520903669.DOI:10.1177/0300060520903669.
|
[33] |
Zhang H, Li J, Zhou J, et al. Finite element analysis of different double-plate angles in the treatment of the femoral shaft nonunion with no cortical support opposite the primary lateral plate[J/OL]. Biomed Res Int, 2018, 2018: 3267107.DOI:10.1155/2018/3267107.
|
[34] |
Wang D, Li N, Luo M, et al. One visualization simulation operation system for distal femoral fracture[J/OL]. Medicine, 2017, 96( 32 ):e7770. DOI:10.1097/MD.0000000000007770.
|
[35] |
Aladağ A, Oğuz D, Çömlekoğlu ME, et al. In vivo wear determination of novel CAD/CAM ceramic crowns by using 3D alignment[J]. J Adv Prosthodont, 2019, 11( 2 ): 120-127.
|
[36] |
Kwon OR, Kang KT, Son J, et al. Biomechanical comparison of fixed-and mobile-bearing for unicomparmental knee arthroplasty using finite element analysis[J]. J Orthop Res, 2014, 32( 2 ):338-345.
|
[37] |
Kang KT, Son J, Kwon SK, et al. Preservation of femoral and tibial coronal alignment to improve biomechanical effects of medial unicompartment knee arthroplasty: computational study[J]. Biomed Mater Eng, 2018, 29( 5 ): 651-664.
|
[38] |
Zach L, Kunčická L, Růžička P, et al. Design, analysis and verification of a knee joint oncological prosthesis finite element model[J]. Comput Biol Med, 2014, 54: 53-60.
|
[39] |
李钟鑫, 刘璐, 高丽兰, 等. 人体全膝关节精细有限元模型建立及有效性验证[J]. 生物医学工程与临床, 2020, 24( 5 ): 501-507.
|
[40] |
张建宏, 游文明, 李壮壮, 等. 基于Solidworks的个体化人工膝关节设计及有限元分析[J]. 扬州职业大学学报, 2016, 20( 1 ):23-26, 30.
|
[41] |
Gautam A, Callejas MA, Acharyya A, et al. Shape-memory-alloybased smart knee spacer for total knee arthroplasty: 3D CAD modelling and a computational study[J]. Med Eng Phys, 2018, 55:43-51.
|
[42] |
张刘会, 刘丹平. 膝关节三维有限元模型建立和验证及模拟后交叉韧带重建术[J]. 生物医学工程与临床, 2020, 24( 5 ): 508-513.
|
[43] |
何青. 利用SolidWorks提高ANSYS有限元分析效率[J]. 化工设备与管道, 2013, 50( 5 ): 24-27.
|
[44] |
宋春燕, 刘峰, 李宏伟. 基于接触力学的膝关节假体几何参数研究[J]. 机械设计与制造工程, 2021, 50( 4 ): 8-12.
|
[45] |
Arab AZE, Merdji A, Benaissa A, et al. Finite-element analysis of a lateral femoro-tibial impact on the total knee arthroplasty[J/OL]. Comput Methods Programs Biomed, 2020, 192: 105446.DOI:10.1016/j.cmpb.2020.105446.
|
[46] |
He P, Li X, Huang S, et al. Analysis of different bicruciate-retaining tibial prosthesis design using a three dimension finite element model[J]. Am J Transl Res, 2017, 9( 5 ): 2618-2628.
|
[47] |
Li Z, Liu P, Ge J, et al. Kinematic parameter analysis and pilot clinical trial of dual-mobility semi-knee prosthesis[J]. Surg Oncol,2019, 30: 13-21.
|
[48] |
赵志昕, 侯丽丽, 贾斌. 膝关节假体设计的有限元分析[J]. 中国矫形外科杂志, 2015, 23( 15 ): 1415-1421.
|
[49] |
马妮, 肖丽英. 基于LifeMOD的个性化人工膝关节设计中的生物力学分析[J]. 中国康复医学杂志, 2011, 26( 6 ): 538-542.
|
[50] |
周广全, 何伟, 庞智晖, 等. 膝关节单髁置换三维参数化建模的研究[J]. 生物医学工程学杂志, 2013, 30( 1 ): 63-66.
|
[51] |
Zheng C, Ma HY, Du YQ, et al. Finite element assessment of the screw and cement technique in total knee arthroplasty[J/OL]. Biomed Res Int, 2020, 2020: 3718705. DOI:10.1155/2020/3718705.
|
[52] |
王昊森, 郝智秀, 林剑浩, 等. 基于有限元方法的全髋关节假体个体化选型分析[J]. 医用生物力学, 2014, 29( 3 ): 219-226.
|
[53] |
Woiczinski M, Steinbrück A, Weber P, et al. Development and validation of a weight-bearing finite element model for total knee replacement[J]. Comput Methods Biomech Biomed Engin, 2016, 19( 10 ): 1033-1045.
|
[54] |
Chan Â, Gamelas J, Folgado J, et al. Biomechanical analysis of the tibial tray design in TKA: comparison between modular and offset tibial trays[J]. Knee Surg Sports Traumatol Arthrosc, 2014, 22( 3 ):590-598.
|
[55] |
姬林松, 李彦林, 黄赞, 等. 不同型号膝关节固定平台假体匹配的三维有限元生物力学分析[J]. 实用医学杂志, 2016, 32( 2 ):222-225.
|
[56] |
Klasan A, Kapshammer A, Miron V, et al. Kinematic alignment in total knee arthroplasty reduces polyethylene contact pressure by increasing the contact area, when compared to mechanical alignment-a finite element analysis[J/OL]. J Pers Med, 2022, 12( 8 ):1285. DOI:10.3390/jpm12081285.
|
[57] |
Koh YG, Park KM, Lee HY, et al. Influence of tibiofemoral congruency design on the wear of patient-specific unicompartmental knee arthroplasty using finite element analysis[J]. Bone Joint Res,2019, 8( 3 ): 156-164.
|
[58] |
Zhang JY, Wang J, Tian DM, et al. Spherical center and rotating platform hinged knee prosthesis: finite-element model establishment,verification and contact analysis[J]. Knee, 2020, 27( 3 ): 731-739.
|
[59] |
Tokunaga S, Rogge RD, Small SR, et al. A finite-element study of metal backing and tibial resection depth in a composite tibia following total knee arthroplasty[J/OL]. J Biomech Eng, 2016, 138( 4 ): 041001. DOI:10.1115/1.4032551.
|
[60] |
Fregly BJ, Besier TF, Lloyd DG, et al. Grand challenge competition to predict in vivo knee loads[J]. J Orthop Res, 2012, 30( 4 ): 503-513.
|
[61] |
Kinney AL, Besier TF, D’Lima DD, et al. Update on grand challenge competition to predict in vivo knee loads[J/OL]. J Biomech Eng, 2013, 135( 2 ): 021012. DOI:10.1115/1.4023255.
|
[62] |
陈瑱贤, 王玲, 李涤尘, 等. 全膝关节置换个体化患者右转步态的骨肌多体动力学仿真[J]. 医用生物力学, 2015, 30( 5 ): 397-403.
|
[63] |
李宏伟, 刘峰. 个体化全膝关节置换骨肌多体动力学模型的适用性评估[J]. 机械设计与制造工程, 2021, 50( 5 ): 6-10.
|
[64] |
任佳轩, 陈瑱贤, 张静, 等. 单髁膝关节置换术股骨部件不同内外侧安装位置的骨肌多体动力学研究[J]. 生物医学工程学杂志, 2023, 40( 3 ): 508-514, 521.
|
[65] |
Lerner ZF, DeMers MS, Delp SL, et al. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces[J]. J Biomech, 2015, 48( 4 ): 644-650.
|
[66] |
Stylianou AP, Guess TM, Kia M. Multibody muscle driven model of an instrumented prosthetic knee during squat and toe rise motions[J/OL]. J Biomech Eng, 2013, 135( 4 ): 041008.DOI:10.1115/1.4023982.
|
[67] |
Chan HY, Walker PS. OpenSim as a preliminary kinematic testing platform for the development of total knee arthroplasty implants[J].J Biomech, 2018, 76: 53-60.
|
[68] |
Kia M, Stylianou AP, Guess TM. Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials[J].Med Eng Phys, 2014, 36( 3 ): 335-344.
|
[69] |
刘书朋, 司文, 严壮志, 等. 基于AnyBodyTM技术的人体运动建模方法[J]. 生物医学工程学进展, 2010, 31( 3 ): 131-134.
|
[70] |
陈瑱贤, 张志峰, 高永昌, 等. 后稳定型全膝关节假体的骨肌多体动力学研究[J]. 生物医学工程学杂志, 2022, 39( 4 ): 651-659.
|
[71] |
王航辉, 宋依芯, 韩为华, 等. 假体偏置角对骨肿瘤全膝关节置换患者下肢生物力学的影响[J]. 现代肿瘤医学, 2023, 31( 20 ):3849-3854.
|
[72] |
张志伟, 张志峰, 陈瑱贤, 等. 股骨柄髓外设计对髋关节接触力影响的骨肌多体动力学研究[J]. 医用生物力学, 2023, 38( 1 ):90-96.
|
[73] |
Mihalko WM, Conner DJ, Benner R, et al. How does TKA kinematics vary with transverse plane alignment changes in a contemporary implant?[J]. Clin Orthop Relat Res, 2012, 470( 1 ): 186-192.
|
[74] |
Mizu-Uchi H, Ma Y, Ishibashi S, et al. Tibial sagittal and rotational alignment reduce patellofemoral stresses in posterior stabilized total knee arthroplasty[J/OL]. Sci Rep, 2022, 12( 1 ): 12319.DOI:10.1038/s41598-022-15759-6.
|
[75] |
Mihalko WM, Williams JL. Computer modeling to predict effects of implant malpositioning during TKA[J]. Orthopedics, 2010, 33( 10 Suppl ): 71-75.
|
[76] |
李晓娜, 项忠霞, 谢庆森. 基于人体生物力学的自行车人机系统仿真研究[J]. 机械设计, 2013, 30( 9 ): 101-104.
|
[77] |
Huynh KT, Gibson I, Jagdish BN, et al. Development and validation of a discretised multi-body spine model in LifeMOD for biodynamic behaviour simulation[J]. Comput Methods Biomech Biomed Engin,2015, 18( 2 ): 175-184.
|
[78] |
Williams JL, Knox DA, Teeter MG, et al. Evidence that in vivo wear damage alters kinematics and contact stresses in a total knee replacement[J]. J Long Term Eff Med Implants, 2010, 20( 1 ):43-48.
|
[79] |
Holmes JW. Teaching from classic papers: Hill’s model of muscle contraction[J]. Adv Physiol Educ, 2006, 30( 2 ): 67-72.
|
[80] |
陈亮, 钱竞光. 基于OpenSim对负重蹲起动作的多体动力学仿真及验证[J]. 辽宁体育科技, 2022, 44( 3 ): 82-87.
|
[81] |
Zhang L, Liu G, Yan Y, et al. A subject-specific musculoskeletal model to predict the tibiofemoral contact forces during daily living activities[J]. Comput Methods Biomech Biomed Engin, 2023, 26( 8 ):972-985.
|
[82] |
Killen BA, Brito da Luz S, Lloyd DG, et al. Automated creation and tuning of personalised muscle paths for OpenSim musculoskeletal models of the knee joint[J]. Biomech Model Mechanobiol, 2021, 20( 2 ): 521-533.
|
[83] |
Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement[J].IEEE Trans Biomed Eng, 2007, 54( 11 ): 1940-1950.
|
[84] |
Schmitz A, Piovesan D. Development of an open-source, discrete element knee model[J/OL]. IEEE Trans Biomed Eng, 2016, 63( 10 ):2056-2067. DOI:10.1109/TBME.2016.2585926.
|
[85] |
宋和胜, 钱竞光, 唐潇. 基于软件OpenSim的人体运动建模理论及其应用领域概述[J]. 医用生物力学, 2015, 30( 4 ): 373-379.
|
[86] |
颜兵兵, 吴豪豪, 毕冉, 等. 基于OpenSim的人体下肢生物力学性能仿真实验[J]. 实验技术与管理, 2023, 40( 8 ): 120-125.
|
[87] |
向春玲, 黄华军, 张雁儒. 快速高仿真人骨有限元几何建模—-基于Mimics、Geomagic及Ansys软件的应用[J]. 宁波大学学报( 理工版 ), 2019, 32( 6 ): 16-22.
|
[88] |
李肃义, 唐世杰, 李凤, 等. 基于深度学习的生物医学数据分析进展[J]. 生物医学工程学杂志, 2020, 37( 2 ): 349-357.
|