[1] |
Safiri S,Kolahi AA,Smith E,et al. Global,regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017[J]. Ann Rheum Dis,2020,79(6): 819-828.
|
[2] |
Hadzic E,Beier F. Emerging therapeutic targets for osteoarthritis[J]. Expert Opin Ther Targets,2023,27(2): 111-120.
|
[3] |
Bannuru RR,Osani MC,Vaysbrot EE,et al. OARSI guidelines for the non-surgical management of knee,hip,and polyarticular osteoarthritis[J]. Osteoarthritis Cartilage,2019,27(11): 1578-1589.
|
[4] |
Messina OD,Vidal Wilman M,Vidal Neira LF. Nutrition,osteoarthritis and cartilage metabolism[J]. Aging Clin Exp Res,2019,31(6): 807-813.
|
[5] |
Jeon OH,David N,Campisi J,et al. Senescent cells and osteoarthritis: a painful connection[J]. J Clin Invest,2018,128(4): 1229-1237.
|
[6] |
Coryell PR,Diekman BO,Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis[J]. Nat Rev Rheumatol,2021,17(1): 47-57.
|
[7] |
Makarczyk MJ,Gao Q,He Y,et al. Current models for development of disease-modifying osteoarthritis drugs[J]. Tissue Eng Part C Methods,2021,27(2): 124-138.
|
[8] |
Klionsky DJ, Petroni G, Amaravadi RK,et al. Autophagy in major human diseases[J/OL]. EMBO J, 2021, 40(19): e108863. DOI: 10.15252/embj.2021108863.
|
[9] |
曹燕,李雪萍. 氧化应激在骨关节炎中的研究进展[J]. 医学综述,2021,27(19): 3779-3784.
|
[10] |
曾惠琼,邹玲华,尹志华,等. 自噬机制在骨关节炎中的作用[J]. 中华生物医学工程杂志,2021,27(4): 453-460.
|
[11] |
Li YS,Zhang FJ,Zeng C,et al. Autophagy in osteoarthritis[J]. Joint Bone Spine,2016,83(2): 143-148.
|
[12] |
Ansari MY,Ball HC,Wase SJ,et al. Lysosomal dysfunction in osteoarthritis and aged cartilage triggers apoptosis in chondrocytes through BAX mediated release of Cytochrome C[J]. Osteoarthritis Cartilage,2021,29(1): 100-112.
|
[13] |
Wang C, Yao Z, Zhang Y,et al. Metformin mitigates cartilage degradation by activating AMPK/SIRT1-mediated autophagy in a mouse osteoarthritis model[J/OL]. Front Pharmacol, 2020, 11: 1114. DOI: 10.3389/fphar.2020.01114.
|
[14] |
Ma L,Liu Y,Zhao X,et al. Rapamycin attenuates articular cartilage degeneration by inhibiting β-catenin in a murine model of osteoarthritis[J]. Connect Tissue Res,2019,60(5): 452-462.
|
[15] |
Liu Y,Li X,Jin A. Rapamycin inhibits nf-ΚB activation by autophagy to reduce catabolism in human chondrocytes[J]. J Invest Surg,2020,33(9): 861-873.
|
[16] |
De Luna-Preitschopf A, Zwickl H, Nehrer S,et al. Rapamycin maintains the chondrocytic phenotype and interferes with inflammatory cytokine induced processes[J/OL]. Int J Mol Sci, 2017, 18(7): 1494. DOI: 10.3390/ijms18071494.
|
[17] |
Wang S,Deng Z,Ma Y,et al. The role of autophagy and mitophagy in bone metabolic disorders[J]. Int J Biol Sci,2020,16(14): 2675-2691.
|
[18] |
Liu Z,Wang T,Sun X,et al. Autophagy and apoptosis: regulatory factors of chondrocyte phenotype transition in osteoarthritis[J]. Hum Cell,2023,36(4): 1326-1335.
|
[19] |
Xiao SQ,Cheng M,Wang L,et al. The role of apoptosis in the pathogenesis of osteoarthritis[J]. Int Orthop,2023,47(8): 1895-1919.
|
[20] |
左显锋,范建楠,莫愁,等. 骨性关节炎关节软骨细胞凋亡的研究进展[J]. 山东医药,2022,62(4): 108-111.
|
[21] |
Mobasheri A,Batt M. An update on the pathophysiology of osteoarthritis[J]. Ann Phys Rehabil Med,2016,59(5-6): 333-339.
|
[22] |
Park DR, Kim J, Kim GM,et al. Osteoclast-associated receptor blockade prevents articular cartilage destruction via chondrocyte apoptosis regulation[J/OL]. Nat Commun, 2020, 11(1): 4343. DOI: 10.1038/s41467-020-18208-y.
|
[23] |
Wang B,Shao Z,Gu M,et al. Hydrogen sulfide protects against IL-1β-induced inflammation and mitochondrial dysfunction-related apoptosis in chondrocytes and ameliorates osteoarthritis[J]. J Cell Physiol,2021,236(6): 4369-4386.
|
[24] |
Xu K,He Y,Moqbel SAA,et al. SIRT3 ameliorates osteoarthritis via regulating chondrocyte autophagy and apoptosis through the PI3K/Akt/mTOR pathway[J]. Int J Biol Macromol,2021,175: 351-360.
|
[25] |
He Y,Fan L,Aaron N,et al. Reduction of Smad2 caused by oxidative stress leads to necrotic death of hypertrophic chondrocytes associated with an endemic osteoarthritis[J]. Rheumatology,2021,61(1): 440-451.
|
[26] |
Duan R, Xie H, Liu ZZ. The role of autophagy in osteoarthritis[J/OL]. Front Cell DevBiol, 2020, 8: 608388. DOI: 10.3389/fcell.2020.608388.
|
[27] |
Jiang S, Liu Y, Xu B,et al. Noncoding RNAs: new regulatory code in chondrocyte apoptosis and autophagy[J/OL]. Wiley Interdiscip Rev RNA, 2020, 11(4): e1584. DOI: 10.1002/wrna.1584.
|
[28] |
徐伟,廖冬发,王娟,等. 细胞衰老在骨关节炎中作用的研究进展[J]. 中国矫形外科杂志,2022,30(15): 1386-1390.
|
[29] |
郭慧宁,凌霜,刘俊,等. 衰老相关分泌表型的研究进展[J]. 中国药理学通报,2016,32(11): 1505-1509.
|
[30] |
Jeon OH,Kim C,Laberge RM,et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment[J]. Nat Med,2017,23(6): 775-781.
|
[31] |
Loeser RF,Collins JA,Diekman BO. Ageing and the pathogenesis of osteoarthritis[J]. Nat Rev Rheumatol,2016,12(7): 412-420.
|
[32] |
Rim YA, Nam Y, Ju JH. The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression[J/OL]. Int J Mol Sci, 2020, 21(7): 2358. DOI: 10.3390/ijms21072358.
|
[33] |
Singh P,Marcu KB,Goldring MB,etal. Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy[J]. Ann N Y Acad Sci,2019,1442(1): 17-34.
|
[34] |
袁长深,李哲,韦晓芸,等. 骨关节炎细胞自噬机制的相关药物研究进展[J]. 医学综述,2022,28(4): 783-789.
|
[35] |
胡浩然,谢雪涛,张长青. 骨关节炎中软骨细胞自噬的研究进展[J/CD]. 中华关节外科杂志(电子版),2018,12(6): 826-829.
|
[36] |
Zheng G, Zhan Y, Li X,et al. TFEB,a potential therapeutic target for osteoarthritis via autophagy regulation[J/OL]. Cell Death Dis, 2018, 9(9): 858. DOI: 10.1038/s41419-018-0909-y.
|
[37] |
Zhou J,Wang Y,Liu Y,et al. Adipose derived mesenchymal stem cells alleviated osteoarthritis and chondrocyte apoptosis through autophagy inducing[J]. J Cell Biochem,2019,120(2): 2198-2212.
|
[38] |
Ge Y, Zhou S, Li Y,et al. Estrogen prevents articular cartilage destruction in a mouse model of AMPK deficiency via ERK-mTOR pathway[J/OL]. Ann Transl Med, 2019, 7(14): 336. DOI: 10.21037/atm.2019.06.77.
|
[39] |
Wu J,Kuang L,Chen C,et al. MiR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis[J]. Biomaterials,2019,206: 87-100.
|
[40] |
钟培瑞,周君,廖源,等. 帕瑞昔布对膝骨关节炎大鼠关节软骨及软骨下骨的影响[J]. 中国矫形外科杂志,2019,27(15): 1404-1409.
|
[41] |
Maimaitijuma T, Yu JH, Ren YL,et al. PHF23 negatively regulates the autophagy of chondrocytes in osteoarthritis[J/OL]. Life Sci, 2020, 253: 117750. DOI: 10.1016/j.lfs.2020.117750.
|
[42] |
Sacitharan PK, Bou-Gharios G, Edwards JR. SIRT1 directly activates autophagy in human chondrocytes[J/OL]. Cell Death Discov, 2020, 6: 41. DOI: 10.1038/s41420-020-0277-0.
|
[43] |
Kong C,Wang C,Shi Y,et al. Active vitamin D activates chondrocyte autophagy to reduce osteoarthritis via mediating the AMPK-mTOR signaling pathway[J]. Biochem Cell Biol,2020,98(3): 434-442.
|
[44] |
Lin Z, Miao J, Zhang T,et al. JUNB-FBXO21-ERK axis promotes cartilage degeneration in osteoarthritis by inhibiting autophagy[J/OL]. Aging Cell, 2021, 20(2): e13306. DOI: 10.1111/acel.13306.
|
[45] |
Xue S,Zhou X,Sang W,et al. Cartilage-targeting peptide-modified dual-drug delivery nanoplatform with NIR laser response for osteoarthritis therapy[J]. Bioact Mater,2021,6(8): 2372-2389.
|
[46] |
Sun K,Luo J,Guo J,et al. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review[J]. Osteoarthritis Cartilage,2020,28(4): 400-409.
|
[47] |
Lu J,Ji ML,Zhang XJ,et al. MicroRNA-218-5p as a potential target for the treatment of human osteoarthritis[J]. Mol Ther,2017,25(12): 2676-2688.
|
[48] |
Cai C,Min S,Yan B,et al. MiR-27a promotes the autophagy and apoptosis of IL-1β treated-articular chondrocytes in osteoarthritis through PI3K/AKT/mTOR signaling[J]. Aging,2019,11(16): 6371-6384.
|
[49] |
Lin C,Shao Y,Zeng C,et al. Blocking PI3K/AKT signaling inhibits bone sclerosis in subchondral bone and attenuates post-traumatic osteoarthritis[J]. J Cell Physiol,2018,233(8): 6135-6147.
|
[50] |
Hu PF,Chen WP,Bao JP,et al. Paeoniflorin inhibits IL-1β-induced chondrocyte apoptosis by regulating the Bax/Bcl-2/caspase-3 signaling pathway[J]. Mol Med Rep,2018,17(4): 6194-6200.
|
[51] |
Chen J,Gu YT,Xie JJ,et al. Gastrodin reduces IL-1β-induced apoptosis,inflammation,and matrix catabolism in osteoarthritis chondrocytes and attenuates rat cartilage degeneration in vivo[J]. Biomed Pharmacother,2018,97: 642-651.
|
[52] |
Khan NM,Ahmad I,Haqqi TM. Nrf2/ARE pathway attenuates oxidative and apoptotic response in human osteoarthritis chondrocytes by activating ERK1/2/ELK1-P70S6K-P90RSK signaling axis[J]. Free Radic Biol Med,2018,116: 159-171.
|
[53] |
Marchev AS,Dimitrova PA,Burns AJ,et al. Oxidative stress and chronic inflammation in osteoarthritis: can NRF2 counteract these partners in crime?[J]. Ann N Y Acad Sci,2017,1401(1): 114-135.
|
[54] |
Murahashi Y, Yano F, Kobayashi H,et al. Intra-articular administration of IκBα kinase inhibitor suppresses mouse knee osteoarthritis via downregulation of the NF-κB/HIF-2α axis[J/OL]. Sci Rep, 2018, 8(1): 16475. DOI: 10.1038/s41598-018-34830-9.
|
[55] |
Wang P,Teng S,Zhuang C,et al. Directed elimination of senescent cells attenuates development of osteoarthritis by inhibition of c-IAP and XIAP[J]. Biochim Biophys Acta Mol Basis Dis,2019,1865(10): 2618-2632.
|
[56] |
Jiang L,Xu K,Li J,et al. Nesfatin-1 suppresses interleukin-1β-induced inflammation,apoptosis,and cartilage matrix destruction in chondrocytes and ameliorates osteoarthritis in rats[J]. Aging,2020,12(2): 1760-1777.
|
[57] |
Velard F, Chatron-Colliet A, Côme D,et al. Adrenomedullin and truncated peptide adrenomedullin(22-52)affect chondrocyte response to apoptotis in vitro: downregulation of FAS protects chondrocyte from cell death[J/OL]. Sci Rep, 2020, 10(1): 16740. DOI: 10.1038/s41598-020-73924-1.
|
[58] |
Yang L,Wang Z,Zou C,et al. Ubiquitin-specific protease 49 attenuates IL-1β-induced rat primary chondrocyte apoptosis by facilitating Axin deubiquitination and subsequent Wnt/β-catenin signaling cascade inhibition[J]. Mol Cell Biochem,2020,474(1-2): 263-275.
|
[59] |
Dvir-Ginzberg M, Mobasheri A, Kumar A. The role of sirtuins in cartilage homeostasis and osteoarthritis[J/OL]. Curr Rheumatol Rep, 2016, 18(7): 43. DOI: 10.1007/s11926-016-0591-y.
|
[60] |
Zhao G,Wang H,Xu C,et al. SIRT6 delays cellular senescence by promoting p27Kip1 ubiquitin-proteasome degradation[J]. Aging,2016,8(10): 2308-2323.
|
[61] |
Collins JA,Kapustina M,Bolduc JA,et al. Sirtuin 6(SIRT6)regulates redox homeostasis and signaling events in human articular chondrocytes[J]. Free Radic Biol Med,2021,166: 90-103.
|
[62] |
Nagai K,Matsushita T,Matsuzaki T,et al. Depletion of SIRT6 causes cellular senescence,DNA damage,and telomere dysfunction in human chondrocytes[J]. Osteoarthritis Cartilage,2015,23(8): 1412-1420.
|
[63] |
Farr JN,Xu M,Weivoda MM,et al. Targeting cellular senescence prevents age-related bone loss in mice[J]. Nat Med,2017,23(9): 1072-1079.
|
[64] |
Faust HJ,Zhang H,Han J,et al. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis[J]. J Clin Invest,2020,130(10): 5493-5507.
|
[65] |
Wu G,Zhang C,Xu L,et al. BAK plays a key role in A-1331852-induced apoptosis in senescent chondrocytes[J]. Biochem Biophys Res Commun,2022,609: 93-99.
|
[66] |
Ding DF,Xue Y,Wu XC,et al. Recent advances in reactive oxygen species(ROS)-responsive polyfunctional nanosystems 3.0 for the treatment of osteoarthritis[J]. J Inflamm Res,2022,15: 5009-5026.
|
[67] |
Riegger J, Schoppa A, Ruths L,et al. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review[J/OL]. Cell Mol Biol Lett, 2023, 28(1): 76. DOI: 10.1186/s11658-023-00489-y.
|
[68] |
Ansari MY,Khan NM,Ahmad I,et al. Parkin clearance of dysfunctional mitochondria regulates ROS levels and increases survival of human chondrocytes[J]. Osteoarthritis Cartilage,2018,26(8): 1087-1097.
|
[69] |
Deng Z, Li Y, Liu H,et al. The role of sirtuin 1 and its activator,resveratrol in osteoarthritis[J/OL]. Biosci Rep, 2019, 39(5): BSR20190189.DOI: 10.1042/BSR20190189.
|
[70] |
Feng K,Chen Z,Liu P,et al. Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model[J]. J Cell Physiol,2019,234(10): 18192-18205.
|
[71] |
D’Adamo S,Cetrullo S,Guidotti S,et al. Spermidine rescues the deregulated autophagic response to oxidative stress of osteoarthritic chondrocytes[J]. Free Radic Biol Med,2020,153: 159-172.
|
[72] |
Ji ML, Jiang H, Li Z,et al. Sirt6 attenuates chondrocyte senescence and osteoarthritis progression[J/OL]. Nat Commun, 2022, 13(1): 7658. DOI: 10.1038/s41467-022-35424-w.
|
[73] |
Marcucci G, Domazetovic V, Nediani C,et al. Oxidative stress and natural antioxidants in osteoporosis: novel preventive and therapeutic approaches[J/OL]. Antioxidants, 2023, 12(2): 373. DOI: 10.3390/antiox12020373.
|
[74] |
韩明睿,刘倩倩,孙洋. 骨关节炎发病机制及药物调控新进展[J]. 中国药理学通报,2022,38(6): 807-812.
|
[75] |
Gigout A,Guehring H,Froemel D,et al. Sprifermin(rhFGF18)enables proliferation of chondrocytes producing a hyaline cartilage matrix[J]. Osteoarthritis Cartilage,2017,25(11): 1858-1867.
|
[76] |
Nalesso G,Thomas BL,Sherwood JC,et al. WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis[J]. Ann Rheum Dis,2017,76(1): 218-226.
|
[77] |
Wu D,Jin S,Lin Z,et al. Sauchinone inhibits IL-1β induced catabolism and hypertrophy in mouse chondrocytes to attenuate osteoarthritis via Nrf2/HO-1 and NF-κB pathways[J]. Int Immunopharmacol,2018,62: 181-190.
|
[78] |
Yano F, Ohba S, Murahashi Y,et al. Runx1 contributes to articular cartilage maintenance by enhancement of cartilage matrix production and suppression of hypertrophic differentiation[J/OL]. Sci Rep, 2019, 9(1): 7666. DOI: 10.1038/s41598-019-43948-3.
|
[79] |
Malfait AM,Tortorella MD. The “elusive DMOAD”: Aggrecanase inhibition from laboratory to clinic[J]. Clin Exp Rheumatol,2019,37 Suppl 120(5): 130-134.
|
[80] |
Latourte A,Kloppenburg M,Richette P. Emerging pharmaceutical therapies for osteoarthritis[J]. Nat Rev Rheumatol,2020,16(12): 673-688.
|
[81] |
Chou HC, Chen CH, Chou LY,et al. Discoidin domain receptors 1 inhibition alleviates osteoarthritis via enhancing autophagy[J/OL]. Int J Mol Sci, 2020, 21(19): 6991. DOI: 10.3390/ijms21196991.
|
[82] |
Sun MMG,Beier F,Pest MA. Recent developments in emerging therapeutic targets of osteoarthritis[J]. Curr Opin Rheumatol,2017,29(1): 96-102.
|
[83] |
Yi H, Zhang W, Cui ZM,et al. Resveratrol alleviates the interleukin-1β-induced chondrocytes injury through the NF-κB signaling pathway[J/OL]. J Orthop Surg Res, 2020, 15(1): 424. DOI: 10.1186/s13018-020-01944-8.
|
[84] |
Tanikella AS, Hardy MJ, Frahs SM,et al. Emerging gene-editing modalities for osteoarthritis[J/OL]. Int J Mol Sci, 2020, 21(17): 6046. DOI: 10.3390/ijms21176046.
|
[85] |
Seidl CI,Fulga TA,Murphy CL. CRISPR-Cas9 targeting of MMP13 in human chondrocytes leads to significantly reduced levels of the metalloproteinase and enhanced type II collagen accumulation[J]. Osteoarthritis Cartilage,2019,27(1): 140-147.
|
[86] |
Karlsen TA, Pernas PF, Staerk J,et al. Generation of IL1β-resistant chondrocytes using CRISPR-CAS genome editing[J/OL]. Osteoarthritis Cartilage, 2016, 24: S325 DOI: 10.1016/j.joca.2016.01.581.
|
[87] |
Zhao L,Huang J,Fan Y,et al. Exploration of CRISPR/Cas9-based gene editing as therapy for osteoarthritis[J]. Ann Rheum Dis,2019,78(5): 676-682.
|
[88] |
|
[89] |
Sanchez D, Ganfornina MD. The lipocalin apolipoprotein D functional portrait: asystematic review[J/OL]. Front Physiol, 2021, 12: 738991. DOI: 10.3389/fphys.2021.738991.
|
[90] |
Kurano M,Tsukamoto K,Kamitsuji S,et al. Apolipoprotein D modulates lipid mediators and osteopontin in an anti-inflammatory direction[J]. Inflamm Res,2023,72(2): 263-280.
|
[91] |
Fyfe-Desmarais G, Desmarais F, Rassart É,et al. Apolipoprotein D in oxidative stress and inflammation[J/OL]. Antioxidants, 2023, 12(5): 1027. DOI: 10.3390/antiox12051027.
|
[92] |
Pascua-Maestro R, Corraliza-Gomez M, Fadrique-Rojo C,et al. Apolipoprotein D-mediated preservation of lysosomal function promotes cell survival and delays motor impairment in Niemann-Pick type A disease[J/OL]. Neurobiol Dis, 2020, 144: 105046. DOI: 10.1016/j.nbd.2020.105046.
|
[93] |
Qin Y,Li J,Zhou Y,et al. Apolipoprotein D as a potential biomarker and construction of a transcriptional regulatory-immune network associated with osteoarthritis by weighted gene coexpression network analysis[J]. Cartilage,2021,13(1_suppl): 1702S-1717S.
|
[94] |
Xu W,Gu S,Zhang G,et al. APOD acts on fibroblast-like synoviocyte and chondrocyte to alleviate the process of osteoarthritis in vitro[J]. J Orthop Res,2024,42(2): 296-305.
|
[95] |
Ji Q,Zheng Y,Zhang G,et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis[J]. Ann Rheum Dis,2019,78(1): 100-110.
|