[1] |
Mcpherson EJ, Woodson C, Holtom P, et al. Periprosthetic total hip infection - outcomes using a staging system[J]. Clin Orthop Relat Res, 2002, (403): 8-15.
|
[2] |
Fink B, Grossmann A, Fuerst M, et al. Two-stage cementless revision of infected hip endoprostheses[J]. Clin Orthop Relat Res, 2009, 467(7): 1848-1858.
|
[3] |
Darouiche RO. Treatment of infections associated with surgical implants[J]. N Engl J Med, 2004, 350(14): 1422-1429.
|
[4] |
王津,王俏杰,沈灏,等.采用可活动性间隔物治疗髋关节假体周围感染的转归[J/CD].中华关节外科杂志(电子版),2017,11(4):417-420.
|
[5] |
Stewart PS, William Costerton J. Antibiotic resistance of bacteria in biofilms[J]. Lancet, 2001, 358(9276): 135-138.
|
[6] |
曹力,纪保超.髋膝关节置换术后假体周围感染焦点问题[J/CD].中华关节外科杂志(电子版),2016,10(4):360-363.
|
[7] |
顾昕,吴海山,赵辉,等.人工关节置换术后假体周围感染的生物膜研究进展[J/CD].中华关节外科杂志(电子版),2012,6(6):940-945.
|
[8] |
Zimmerli W, Lew PD, Waldvogel FA. Pathogenesis of foreign body infection. Evidence for a local granulocyte defect[J]. J Clin Invest, 1984, 73(4): 1191-1200.
|
[9] |
Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections[J]. N Engl J Med, 2004, 351(16): 1645-1654.
|
[10] |
Zmistowski B, Fedorka CJ, Sheehan E, et al. Prosthetic joint infection caused by gram-negative organisms[J]. J Arthroplasty, 2011, 26(6 Suppl): 104-108.
|
[11] |
Wimmer MD, Friedrich MJ, Randau TM, et al. Polymicrobial infections reduce the cure rate in prosthetic joint infections: outcome analysis with two-stage exchange and follow-up>= two years[J]. Int Orthop, 2016, 40(7): 1367-1373.
|
[12] |
Qin H, Cao HL, Zhao YC, et al. In vitro and in vivo anti-biofilm effects of Silver nanoparticles immobilized on Titanium[J]. Biomaterials, 2014, 35(33): 9114-9125.
|
[13] |
Baumstummler A, Chollet R, Meder H, et al. Development of a nondestructive fluorescence-based enzymatic staining of microcolonies for enumerating bacterial contamination in filterable products[J]. J Appl Microbiol, 2011, 110(1): 69-79.
|
[14] |
Guo G, Zhou H, Wang Q, et al. Nano-layered Magnesium fluoride reservoirs on biomaterial surfaces strengthen polymorphonuclear leukocyte resistance to bacterial pathogens[J]. Nanoscale, 2017, 9(2): 875-892.
|
[15] |
Wang JX, Li JH, Guo GY, et al. Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: new insight into the antimicrobial action of Silver[J/OL]. Sci Rep, 2016, 6: 32699. doi: 10.1038/srep32699.
|
[16] |
Wang JX, Zhou HJ, Guo GY, et al. Enhanced anti-infective efficacy of ZnO nanoreservoirs through a combination of intrinsic anti-biofilm activity and reinforced innate defense[J]. ACS Appl Mater Interfaces, 2017, 9(39): 33609-33623.
|
[17] |
Schildhauer TA, Peter E, Muhr G, et al. Activation of human leukocytes on Tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials[J]. J Biomed Mater Res A, 2009, 88(2): 332-341.
|
[18] |
Sahni G, Gopinath P, Jeevanandam P. A novel thermal decomposition approach to synthesize hydroxyapatite-silver nanocomposites and their antibacterial action against GFP-expressing antibiotic resistant E. coli[J]. Colloids Surf B Biointerfaces, 2013, 103: 441-447.
|
[19] |
Kawaja MD, Smithson LJ, Elliott J, et al. Nerve growth factor promoter activity revealed in mice expressing enhanced green fluorescent protein[J]. J Comp Neurol, 2011, 519(13): 2522-2545.
|
[20] |
Jasek E, Mirecka J, Litwin JA. Effect of differentiating agents(all-trans retinoic acid and phorbol 12-myristate 13-acetate)on drug sensitivity of HL60 and NB4 cells in vitro[J]. Folia Histochem Cytobiol, 2008, 46(3): 323-330.
|
[21] |
高朝贤,郑浩渠,惠长野,等.红色荧光蛋白变种mCherry的表达,纯化和应用探讨[J].国际生物制品学杂志,2017,40(1):31-35.
|
[22] |
郭阁永,王加兴,谈佳琪,等.稳定生物发光金葡菌临床株假体周围关节感染动物模型的构建[J/CD].中华关节外科杂志(电子版),2016,10(4):399-406.
|
[23] |
Wang J, Li J, Qian S, et al. Antibacterial surface design of Titanium-Based biomaterials for enhanced Bacteria-Killing and Cell-Assisting functions against periprosthetic joint infection[J]. ACS Appl Mater Interfaces, 2016, 8(17): 11162-11178.
|
[24] |
|
[25] |
Karahan HE, Wiraja C, Xu CJ, et al. Graphene materials in antimicrobial nanomedicine: current status and future perspectives[J/OL]. Adv Healthc Mater, 2018, 7(13, SI): e1701406. doi: 10.1002/adhm.201701406.
|
[26] |
杨晓玫,师尚礼.红、黄.绿三种颜色荧光质粒导入大肠杆菌中的稳定性表达[J].甘肃农业大学学报,2018,53(3):193-198.
|
[27] |
Shen Y, Chen Y, Wu J, et al. Engineering of mCherry variants with long Stokes shift, red-shifted fluorescence, and low cytotoxicity[J/OL]. PLoS One, 2017, 12(2): e0171257. doi: 10.1371/journal.pone.0171257.
|
[28] |
Xuan WM, Yao AZ, Schultz PG. Genetically encoded fluorescent probe for detecting sirtuins in living cells[J]. J Am Chem Soc, 2017, 139(36): 12350-12353.
|
[29] |
Arciola CR, Campoccia D, Speziale P, et al. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials[J]. Biomaterials, 2012, 33(26): 5967-5982.
|
[30] |
Francolini I, Vuotto C, Piozzi AA. Antifouling and antimicrobial biomaterials: an overview[J]. APMIS, 2017, 125(4, SI): 392-417.
|
[31] |
Janeway CA, Jr., Medzhitov R. Innate immune recognition[J]. Annu Rev Immunol, 2002, 20:197-216.
|
[32] |
Chen M, Wu S, Tsai T, et al. Regulation of neutrophil phagocytosis of Escherichia coli by antipsychotic drugs[J]. Int Immunopharmacol, 2014, 23(2): 550-557.
|
[33] |
Chen ML, Wu S, Tsai TC, et al. The caffeic acid in aqueous extract of Tournefortia sarmentosa enhances neutrophil phagocytosis of Escherichia coli[J]. Immunopharmacol Immunotoxicol, 2014, 36(6): 390-396.
|