切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (02) : 243 -247. doi: 10.3877/cma.j.issn.1674-134X.2023.02.013

综述

静电纺丝药物释放系统防治植入物感染的研究进展
王鹏, 商广前, 王英振, 龙云泽, 徐浩()   
  1. 266071 青岛大学
    266071 青岛大学;266103 青岛大学附属医院骨科
    266103 青岛大学附属医院骨科
  • 收稿日期:2020-11-21 出版日期:2023-04-01
  • 通信作者: 徐浩
  • 基金资助:
    国家自然科学基金(81772329)

Research progress in electrospun nanofibers drug delivery system for prevention and treatment of implant-associated infection

Peng Wang, Guangqian Shang, Yingzhen Wang, Yunze Long, Hao Xu()   

  1. Qingdao University, Qingdao 266071, China
    Qingdao University, Qingdao 266071, China; Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao 266103, China
    Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao 266103, China
  • Received:2020-11-21 Published:2023-04-01
  • Corresponding author: Hao Xu
引用本文:

王鹏, 商广前, 王英振, 龙云泽, 徐浩. 静电纺丝药物释放系统防治植入物感染的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(02): 243-247.

Peng Wang, Guangqian Shang, Yingzhen Wang, Yunze Long, Hao Xu. Research progress in electrospun nanofibers drug delivery system for prevention and treatment of implant-associated infection[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(02): 243-247.

伴随着人口的老龄化和骨科手术技术的发展以及假体植入物的不断改进,患者对于假体植入手术的需求在近几年迅速增加。然而假体周围感染仍难以完全避免。如何在术后实行局部稳定可控的抗生素给药策略,防止假体周围感染是所有关节外科医生共同关注的问题。而近年热门的静电纺丝纳米纤维涂层由于具有高比表面积、高质量体积比、高孔隙率和较高的生物相容性,在持续性药物释放方面展现出明显优势。本文综述了国内外静电纺丝纳米纤维涂层作为药物释放系统在假体周围感染防治方面的研究现状,并对其特点及优缺点进行了介绍。

With an aging population, the demand for prosthetic implants has rapidly increased in recent years following the development of surgical techniques in orthopaedic surgery together with the continuous improvement of prosthetic implants. However, implant-associated infection is still an inescapable issue in surgical implantation. To implement a stable and controlled local antibiotic administration strategy after surgery for prevention of the implant-associated infection is a common concern of all articular surgeons. In recent years, the electrospun nanofiber coated drug delivery becomes popular and has shown obvious advantages in sustained drug release due to its high specific surface area, high mass volume ratio, high porosity and high biocompatibility. This paper comprehensively reviewed the research status of electrospun nanofiber coated drug delivery system in prevention and treatment of implant-associated infection at home and abroad, including the characteristics, advantages and disadvantages of the drug delivery system.

[1]
Mao C, Xiang Y, Liu X, et al. Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing[J]. ACS Nano, 2018, 12(2): 1747-1759.
[2]
Wang Y, Ashbaugh AG, Dikeman DA, et al. Interleukin-1β and tumor necrosis factor are essential in controlling an experimental orthopedic implant-associated infection[J]. J Orthop Res, 2020, 38(8):1800-1809.
[3]
Jung SW, Oh SH, Lee IS, et al. In situ gelling hydrogel with anti-bacterial activity and bone healing property for treatment of osteomyelitis[J]. Tissue Eng Regen Med, 2019, 16(5): 479-490.
[4]
Ashbaugh AG, Jiang X, Zheng J, et al. Polymeric nanofiber coating with tunable combinatorial antibiotic delivery prevents biofilm-associated infection in vivo[J]. Proc Natl Acad Sci USA, 2016, 113(45): E6919-E6928. DOI: 10.1073/pnas.1613722113.
[5]
Jian S, Zhu J, Jiang S, et al. Nanofibers with diameter below one nanometer from electrospinning[J]. RSC Adv, 2018, 8(9): 4794-4802.
[6]
Zupančič Š. Core-shell nanofibers as drug delivery systems[J]. Acta Pharm, 2019, 69(2): 131-153.
[7]
Zupančič Š, Sinha-Ray S, Sinha-Ray S, et al. Controlled release of ciprofloxacin from core-shell nanofibers with monolithic or blended core[J]. Mol Pharm, 2016, 13(4): 1393-1404.
[8]
Pelipenko J, Kocbek P, Kristl J. Critical attributes of nanofibers: preparation, drug loading, and tissue regeneration[J]. Int J Pharm, 2015, 484(1-2): 57-74.
[9]
Han D, Steckl AJ. Coaxial electrospinning formation of complex polymer fibers and their applications[J]. Chem Plus Chem, 2019, 84(10): 1453-1497.
[10]
Frizzell H, Ohlsen TJ, Woodrow KA. Protein-loaded emulsion electrospun fibers optimized for bioactivity retention and pH-controlled release for peroral delivery of biologic therapeutics[J]. Int J Pharm, 2017, 533(1): 99-110.
[11]
Illangakoon UE, Yu DG, Ahmad BS, et al. 5-Fluorouracil loaded Eudragit fibers prepared by electrospinning[J]. Int J Pharm, 2015, 495(2): 895-902.
[12]
Jia D, Gao Y, Williams GR. Core/shell poly(ethylene oxide)/Eudragit fibers for site-specific release[J]. Int J Pharm, 2017, 523(1): 376-385.
[13]
Jin M, Yu DG, Wang X, et al. Electrospun contrast-agent-loaded fibers for colon-targeted MRI[J]. Adv Healthc Mater, 2016, 5(8): 977-985.
[14]
Zupančič Š, Preem L, Kristl J, et al. Impact of PCL nanofiber mat structural properties on hydrophilic drug release and antibacterial activity on periodontal pathogens[J]. Eur J Pharm Sci, 2018, 122: 347-358.
[15]
Shalumon KT, Sheu C, Chen CH, et al. Multi-functional electrospun antibacterial core-shell nanofibrous membranes for prolonged prevention of post-surgical tendon adhesion and inflammation[J]. Acta Biomater, 2018, 72:121-136.
[16]
Liu F, Wang X, Chen T, et al. Hydroxyapatite/silver electrospun fibers for anti-infection and osteoinduction[J]. J Adv Res, 2020, 21: 91-102.
[17]
Mathew A, Vaquette C, Hashimi S, et al. Antimicrobial and immunomodulatory surface-functionalized electrospun membranes for bone regeneration[J/OL]. Adv Healthcare Mater, 2017, 6(10): 1601345. DOI: 10.1002/adhm.201601345.
[18]
Ivashchenko O, Woźniak A, Coy E, et al. Release and cytotoxicity studies of magnetite/Ag/antibiotic nanoparticles: an interdependent relationship[J]. Colloids Surf B Biointerfaces, 2017, 152: 85-94.
[19]
Wang L, Zhang L, Yan J, et al. Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections[J/OL]. Int J Nanomed, 2014: 3027. DOI: 10.2147/ijn.s63991.
[20]
Fathi M, Akbari B, Taheriazam A. Antibiotics drug release controlling and osteoblast adhesion from Titania nanotubes arrays using silk fibroin coating[J/OL]. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109743. DOI: 10.1016/j.msec.2019.109743.
[21]
Song W, Yu X, Markel DC, et al. Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device[J/OL]. Biofabrication, 2013, 5(3): 035006. DOI: 10.1088/1758-5082/5/3/035006.
[22]
Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the Natural environment to infectious diseases[J]. Nat Rev Microbiol, 2004, 2(2): 95-108.
[23]
Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections[J]. Science, 1999, 284(5418): 1318-1322.
[24]
Baddour LM, Epstein AE, Erickson CC, et al. Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association[J]. Circulation, 2010, 121(3):458-477.
[25]
Lim SH, Mao HQ. Electrospun scaffolds for stem cell engineering[J]. Adv Drug Deliv Rev, 2009, 61(12): 1084-1096.
[26]
Chou SF, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers[J]. J Control Release, 2015, 220(Pt B): 584-591.
[27]
Dash TK, Konkimalla VB. Poly--caprolactone based formulations for drug delivery and tissue engineering: a review[J]. J Control Release, 2012, 158(1): 15-33.
[28]
Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices[J]. Biomaterials, 2000, 21(23): 2475-2490.
[29]
Osmon DR, Berbari EF, Berendt AR, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the infectious diseases society of America[J/OL]. Clin Infect Dis, 2013, 56(1): e1-e25. DOI: 10.1093/cid/cis803.
[30]
Diefenbeck M, Mückley T, Hofmann GO. Prophylaxis and treatment of implant-related infections by local application of antibiotics[J]. Injury, 2006, 37(Suppl 2): S95-S104.
[1] 王宏宇. 固定与活动平台假体在全膝关节置换术中的应用价值[J]. 中华关节外科杂志(电子版), 2023, 17(06): 871-876.
[2] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[3] 王桂冠, 徐杰. 运动学对线在全膝关节置换术中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 726-731.
[4] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[5] 杨瑞洲, 李国栋, 吴向阳. 腹股沟疝术后感染的治疗方法探讨[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 715-719.
[6] 徐金林, 陈征. 抗菌药物临床应用监测对腹股沟疝修补术预防用药及感染的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 720-723.
[7] 李静如, 王江玲, 吴向阳. 简易负压引流在腹股沟疝术后浅部感染中的疗效分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 745-749.
[8] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[9] 赵立力, 王魁向, 张小冲, 李志远. 血沉与C-反应蛋白比值在假体周围感染中的诊断价值分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 351-355.
[10] 卓少宏, 林秀玲, 周翠梅, 熊卫莲, 马兴灶. CD64指数、SAA/CRP、PCT联合检测在小儿消化道感染性疾病鉴别诊断中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 505-509.
[11] 李达, 张大涯, 陈润祥, 张晓冬, 黄士美, 陈晨, 曾凡, 陈世锔, 白飞虎. 海南省东方市幽门螺杆菌感染现状的调查与相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 858-864.
[12] 卓徐鹏, 刘颖, 任菁菁. 感染性疾病与老年人低蛋白血症的相关性研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 896-899.
[13] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[14] 李琪, 黄钟莹, 袁平, 关振鹏. 基于某三级医院的ICU多重耐药菌医院感染影响因素的分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 777-782.
[15] 杨艳丽, 陈昱, 赵若辰, 杜伟, 马海娟, 许珂, 张莉芸. 系统性红斑狼疮合并血流感染的危险因素及细菌学分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 694-699.
阅读次数
全文


摘要