切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2023, Vol. 17 ›› Issue (02) : 243 -247. doi: 10.3877/cma.j.issn.1674-134X.2023.02.013

综述

静电纺丝药物释放系统防治植入物感染的研究进展
王鹏, 商广前, 王英振, 龙云泽, 徐浩()   
  1. 266071 青岛大学
    266071 青岛大学;266103 青岛大学附属医院骨科
    266103 青岛大学附属医院骨科
  • 收稿日期:2020-11-21 出版日期:2023-04-01
  • 通信作者: 徐浩
  • 基金资助:
    国家自然科学基金(81772329)

Research progress in electrospun nanofibers drug delivery system for prevention and treatment of implant-associated infection

Peng Wang, Guangqian Shang, Yingzhen Wang, Yunze Long, Hao Xu()   

  1. Qingdao University, Qingdao 266071, China
    Qingdao University, Qingdao 266071, China; Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao 266103, China
    Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao 266103, China
  • Received:2020-11-21 Published:2023-04-01
  • Corresponding author: Hao Xu
引用本文:

王鹏, 商广前, 王英振, 龙云泽, 徐浩. 静电纺丝药物释放系统防治植入物感染的研究进展[J/OL]. 中华关节外科杂志(电子版), 2023, 17(02): 243-247.

Peng Wang, Guangqian Shang, Yingzhen Wang, Yunze Long, Hao Xu. Research progress in electrospun nanofibers drug delivery system for prevention and treatment of implant-associated infection[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2023, 17(02): 243-247.

伴随着人口的老龄化和骨科手术技术的发展以及假体植入物的不断改进,患者对于假体植入手术的需求在近几年迅速增加。然而假体周围感染仍难以完全避免。如何在术后实行局部稳定可控的抗生素给药策略,防止假体周围感染是所有关节外科医生共同关注的问题。而近年热门的静电纺丝纳米纤维涂层由于具有高比表面积、高质量体积比、高孔隙率和较高的生物相容性,在持续性药物释放方面展现出明显优势。本文综述了国内外静电纺丝纳米纤维涂层作为药物释放系统在假体周围感染防治方面的研究现状,并对其特点及优缺点进行了介绍。

With an aging population, the demand for prosthetic implants has rapidly increased in recent years following the development of surgical techniques in orthopaedic surgery together with the continuous improvement of prosthetic implants. However, implant-associated infection is still an inescapable issue in surgical implantation. To implement a stable and controlled local antibiotic administration strategy after surgery for prevention of the implant-associated infection is a common concern of all articular surgeons. In recent years, the electrospun nanofiber coated drug delivery becomes popular and has shown obvious advantages in sustained drug release due to its high specific surface area, high mass volume ratio, high porosity and high biocompatibility. This paper comprehensively reviewed the research status of electrospun nanofiber coated drug delivery system in prevention and treatment of implant-associated infection at home and abroad, including the characteristics, advantages and disadvantages of the drug delivery system.

[1]
Mao C, Xiang Y, Liu X, et al. Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing[J]. ACS Nano, 2018, 12(2): 1747-1759.
[2]
Wang Y, Ashbaugh AG, Dikeman DA, et al. Interleukin-1β and tumor necrosis factor are essential in controlling an experimental orthopedic implant-associated infection[J]. J Orthop Res, 2020, 38(8):1800-1809.
[3]
Jung SW, Oh SH, Lee IS, et al. In situ gelling hydrogel with anti-bacterial activity and bone healing property for treatment of osteomyelitis[J]. Tissue Eng Regen Med, 2019, 16(5): 479-490.
[4]
Ashbaugh AG, Jiang X, Zheng J, et al. Polymeric nanofiber coating with tunable combinatorial antibiotic delivery prevents biofilm-associated infection in vivo[J]. Proc Natl Acad Sci USA, 2016, 113(45): E6919-E6928. DOI: 10.1073/pnas.1613722113.
[5]
Jian S, Zhu J, Jiang S, et al. Nanofibers with diameter below one nanometer from electrospinning[J]. RSC Adv, 2018, 8(9): 4794-4802.
[6]
Zupančič Š. Core-shell nanofibers as drug delivery systems[J]. Acta Pharm, 2019, 69(2): 131-153.
[7]
Zupančič Š, Sinha-Ray S, Sinha-Ray S, et al. Controlled release of ciprofloxacin from core-shell nanofibers with monolithic or blended core[J]. Mol Pharm, 2016, 13(4): 1393-1404.
[8]
Pelipenko J, Kocbek P, Kristl J. Critical attributes of nanofibers: preparation, drug loading, and tissue regeneration[J]. Int J Pharm, 2015, 484(1-2): 57-74.
[9]
Han D, Steckl AJ. Coaxial electrospinning formation of complex polymer fibers and their applications[J]. Chem Plus Chem, 2019, 84(10): 1453-1497.
[10]
Frizzell H, Ohlsen TJ, Woodrow KA. Protein-loaded emulsion electrospun fibers optimized for bioactivity retention and pH-controlled release for peroral delivery of biologic therapeutics[J]. Int J Pharm, 2017, 533(1): 99-110.
[11]
Illangakoon UE, Yu DG, Ahmad BS, et al. 5-Fluorouracil loaded Eudragit fibers prepared by electrospinning[J]. Int J Pharm, 2015, 495(2): 895-902.
[12]
Jia D, Gao Y, Williams GR. Core/shell poly(ethylene oxide)/Eudragit fibers for site-specific release[J]. Int J Pharm, 2017, 523(1): 376-385.
[13]
Jin M, Yu DG, Wang X, et al. Electrospun contrast-agent-loaded fibers for colon-targeted MRI[J]. Adv Healthc Mater, 2016, 5(8): 977-985.
[14]
Zupančič Š, Preem L, Kristl J, et al. Impact of PCL nanofiber mat structural properties on hydrophilic drug release and antibacterial activity on periodontal pathogens[J]. Eur J Pharm Sci, 2018, 122: 347-358.
[15]
Shalumon KT, Sheu C, Chen CH, et al. Multi-functional electrospun antibacterial core-shell nanofibrous membranes for prolonged prevention of post-surgical tendon adhesion and inflammation[J]. Acta Biomater, 2018, 72:121-136.
[16]
Liu F, Wang X, Chen T, et al. Hydroxyapatite/silver electrospun fibers for anti-infection and osteoinduction[J]. J Adv Res, 2020, 21: 91-102.
[17]
Mathew A, Vaquette C, Hashimi S, et al. Antimicrobial and immunomodulatory surface-functionalized electrospun membranes for bone regeneration[J/OL]. Adv Healthcare Mater, 2017, 6(10): 1601345. DOI: 10.1002/adhm.201601345.
[18]
Ivashchenko O, Woźniak A, Coy E, et al. Release and cytotoxicity studies of magnetite/Ag/antibiotic nanoparticles: an interdependent relationship[J]. Colloids Surf B Biointerfaces, 2017, 152: 85-94.
[19]
Wang L, Zhang L, Yan J, et al. Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections[J/OL]. Int J Nanomed, 2014: 3027. DOI: 10.2147/ijn.s63991.
[20]
Fathi M, Akbari B, Taheriazam A. Antibiotics drug release controlling and osteoblast adhesion from Titania nanotubes arrays using silk fibroin coating[J/OL]. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109743. DOI: 10.1016/j.msec.2019.109743.
[21]
Song W, Yu X, Markel DC, et al. Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device[J/OL]. Biofabrication, 2013, 5(3): 035006. DOI: 10.1088/1758-5082/5/3/035006.
[22]
Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the Natural environment to infectious diseases[J]. Nat Rev Microbiol, 2004, 2(2): 95-108.
[23]
Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections[J]. Science, 1999, 284(5418): 1318-1322.
[24]
Baddour LM, Epstein AE, Erickson CC, et al. Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association[J]. Circulation, 2010, 121(3):458-477.
[25]
Lim SH, Mao HQ. Electrospun scaffolds for stem cell engineering[J]. Adv Drug Deliv Rev, 2009, 61(12): 1084-1096.
[26]
Chou SF, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers[J]. J Control Release, 2015, 220(Pt B): 584-591.
[27]
Dash TK, Konkimalla VB. Poly--caprolactone based formulations for drug delivery and tissue engineering: a review[J]. J Control Release, 2012, 158(1): 15-33.
[28]
Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices[J]. Biomaterials, 2000, 21(23): 2475-2490.
[29]
Osmon DR, Berbari EF, Berendt AR, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the infectious diseases society of America[J/OL]. Clin Infect Dis, 2013, 56(1): e1-e25. DOI: 10.1093/cid/cis803.
[30]
Diefenbeck M, Mückley T, Hofmann GO. Prophylaxis and treatment of implant-related infections by local application of antibiotics[J]. Injury, 2006, 37(Suppl 2): S95-S104.
[1] 农云洁, 黄小桂, 黄裕兰, 农恒荣. 超声在多重肺部感染诊断中的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 872-876.
[2] 王相迎, 杨长生, 曲铁兵. 固定平台单髁置换假体合适位置的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 638-645.
[3] 刘欢, 邢皓, 常正奇, 张记. 机械敏感性离子通道蛋白Piezo1在感染相关疾病中的研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 263-269.
[4] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[5] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[6] 许月芳, 刘旺, 曾妙甜, 郭宇姝. 多粘菌素B和多粘菌素E治疗外科多重耐药菌感染临床疗效及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 700-703.
[7] 邹永康, 石雍, 徐贤刚, 张帅民, 刘衍, 杨生鹏, 叶啟发, 陈根, 张毅. 肾移植术后手术切口米根霉感染伴菌血症一例并文献复习[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 289-292.
[8] 皮尔地瓦斯·麦麦提玉素甫, 李慧灵, 艾克拜尔·艾力, 李赞林, 王志, 克力木·阿不都热依木. 生物补片修补巨大复发性腹壁切口疝临床疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 624-628.
[9] 顾熙, 徐子宇, 周澍, 张吴楼, 张业鹏, 林昊, 刘宗航, 嵇振岭, 郑立锋. 腹股沟疝腹膜前间隙无张力修补术后补片感染10 例报道[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 665-669.
[10] 臧宇, 姚胜, 朱新勇, 戎世捧, 田智超. 低温等离子射频消融治疗腹壁疝术后补片感染的临床效果[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 687-692.
[11] 杨闯, 马雪. 腹壁疝术后感染的危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 693-696.
[12] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[13] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
[14] 贾玲玲, 滕飞, 常键, 黄福, 刘剑萍. 心肺康复在各种疾病中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 859-862.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要