切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2021, Vol. 15 ›› Issue (01) : 64 -70. doi: 10.3877/cma.j.issn.1674-134X.2021.01.011

所属专题: 文献

基础论著

美罗培南骨水泥体外生物力学及洗脱特性研究
王利宏1, 冯亚东1, 张小伟2, 金龙3, 周方伦1, 徐国红1,()   
  1. 1. 322100 温州医科大学附属东阳医院骨科
    2. 322100 温州医科大学附属东阳医院病理科
    3. 322100 温州医科大学附属东阳医院药剂科
  • 收稿日期:2020-06-20 出版日期:2021-02-01
  • 通信作者: 徐国红
  • 基金资助:
    浙江省自然科学基金基础公益研究计划项目(LGF18H060001)

In vitro biomechanical effects and elution of meropenem-loaded bone cement

Lihong Wang1, Yadong Feng1, Xiaowei Zhang2, Long Jin3, Fanglun Zhou1, Guohong Xu1,()   

  1. 1. Department of Orthopedics, Dongyang People's Hospital, Wenzhou Medical University, Wenzhou 322100, China
    2. Department of Pathology, Dongyang People's Hospital, Wenzhou Medical University, Wenzhou 322100, China
    3. Department of Pharmacy, Dongyang People's Hospital, Wenzhou Medical University, Wenzhou 322100, China
  • Received:2020-06-20 Published:2021-02-01
  • Corresponding author: Guohong Xu
引用本文:

王利宏, 冯亚东, 张小伟, 金龙, 周方伦, 徐国红. 美罗培南骨水泥体外生物力学及洗脱特性研究[J]. 中华关节外科杂志(电子版), 2021, 15(01): 64-70.

Lihong Wang, Yadong Feng, Xiaowei Zhang, Long Jin, Fanglun Zhou, Guohong Xu. In vitro biomechanical effects and elution of meropenem-loaded bone cement[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2021, 15(01): 64-70.

目的

研究不同含量的美罗培南骨水泥的体外生物力学特性和药物洗脱特性。

方法

40 g骨水泥(Palacos LV,40 g聚合物粉剂+20 ml单体液剂)中分别加入2、4、6 g注射用美罗培南和2、4 g注射用盐酸万古霉素复合,制备成A2、A4、A6、B2、B4和不含抗菌药物的对照组共6组样品。对6组样品分别进行能承受的最大压力和剪切力载荷测试,并计算耐压强度、压缩模量。采用高效液相色谱法(HPLC)对美罗培南标准品溶液和美罗培南骨水泥洗脱液进行检测,绘制美罗培南色谱图及标准线性回归方程;检测A4组美罗培南骨水泥在37 ℃恒温条件下浸渍24、48、72 h和6、12、24 d后洗脱液药物浓度,并绘制时间-药物浓度曲线。采用方差分析对样品最大压力载荷、最大剪切力载荷、耐压强度和压缩模量进行比较;采用线性相关与回归分析获得标准线性回归方程。

结果

和对照组比较,A2、A6组样品能承受的最大压力载荷和耐压强度相似(P> 0.05);A4组能承受的最大压力载荷和耐压强度高于对照组(t =4.41、4.41,均为P< 0.01);B2、B4组能承受的最大压力载荷(t =9.01、9.01,均为P <0.01)和耐压强度低于对照组(t =12.26、12.26,均为P <0.01);且B4组低于B2组,差异均有统计学意义(t =4.01、4.01,均为P <0.01)。A2、A4、A6、对照组样品压缩模量和能承受的最大剪切载荷组间比较,差异无统计学意义(P > 0.05)。B2、B4组压缩模量低于对照组(t=4.85、8.15,均为P<0.01),且B4组低于B2组,差异有统计学意义(t=4.73,P <0.05)。B2、B4组能承受的最大剪切载荷相似(P> 0.05),但都低于对照组(t=5.84、5.05,均为P< 0.01)。美罗培南标准品溶液的标准线性回归方程(y =15.0265x+13.5218,R=1.00)。A4组样品,在37 ℃恒温条件下浸渍24、48、72 h和6、12、24 d后,洗脱液中的美罗培南药物浓度分别为60.05、9.99、4.3、4.05、1.96、0.62 μg/ml。

结论

40 g Palacos LV骨水泥中加入最多6 g美罗培南时,不降低骨水泥的力学特性,同时优于相同含量万古霉素骨水泥的力学特性。10%含量的美罗培南骨水泥在37 ℃恒温条件下能持续释放美罗培南达24 d。

Objective

To summarize the biomechanical effects and elution of meropenem-loaded bone cement with the different contents.

Methods

Forty grams of Palacos LV bone cement was respectively added two, four, six grams meropenem, or two and four grams vancomycin or no antibiotic and prepared into a total of six groups cylindrical samples of A2, A4, A6, B2, B4 and control group (antibiotic-free). The maximum compression and shear tests were performed on each group of samples, and the compressive strength and compressive modulus were calculated. The standard curve of meropenem was draw and the regression equation was calculated. At a constant temperature of 37 ℃, meropenem-loaded bone cement cylinders (A4) were serially immersed in saline solution. The eluent was collected at predetermined time points of 24, 48, 72 h and six, 12, 24 d. The drug concentration of eluent was measured by high performance liquid chromatography and the elution kinetics was studied. The analysis of variance (ANOVA) method was used to compare the overall difference of the maximum compression loads, maximum shear loads, compressive strength and compressive modulus between groups. Linear correlation and regression analysis were used to obtain the standard regression equation of meropenem.

Results

Six groups of samples, A2, A4, A6, B2, B4 and the control group, were successfully made. The maximum compression loads and compressive strengths of group A2, A6 and the control group were similar (P>0.05). The maximum compression load and compressive strength of group A4 were higher than those of control group (t=4.41, 4.41, both P<0.01). The parameters of group B2 and B4 were lower than those of the control group(maximum compression load : t=9.01, 9.01, compressive strength: t=12.26, 12.26, all P<0.05), and those of B4 were lower than those of group B2 (t=4.01, 4.01, both P< 0.05). There were no significant differences in compressive modulus and maximum shear loads between groups A2, A4, A6 and the control group (P >0.05). The compressive modulus of group B2 and B4 were lower than that of control group (t=4.85, 8.15, both P <0.05), and that of B4 was lower than that of group B2(t=4.73, P <0.05). The maximum shear loads of B2 and B4 groups were similar, but lower than that of control group (t=5.84, 5.05, both P <0.05). The regression equation of meropenem was(y=15.0265x + 13.5218, R=1.00). At the time points of 24, 48, 72 h and six, 12, 24 d, the drug concentration of eluent were 60.05, 9.99, 4.3, 4.05, 1.96 μg/ml and 0.62 μg/ml respectively.

Conclusions

When 40 g Palacos LV bone cement is added no more than 6 g meropenem, the biomechanical effects will not be reduced, and they are superior to vancomycin-loaded bone cement with the same contents. At a constant temperature of 37 ℃, meropenem can be released from bone cement for up to 24 d.

图1 抗生素骨水泥样品的制备。图A为游标卡尺测量抗生素骨水泥样品的直径;图B为游标卡尺测量抗生素骨水泥样品的长度
图2 抗生素骨水泥样品的制备。图A为40 g骨水泥(Palacos LV 40 g聚合物粉剂+20 ml单体液剂)中加入2 g美罗培南,复合物呈稀糊状;图B为40 g骨水泥(Palacos LV 40 g聚合物粉剂+20 ml单体液剂)中加入6 g美罗培南,复合物呈面糊状;图C为40 g骨水泥(Palacos LV 40 g聚合物粉剂+20 ml单体液剂)中加入4 g万古霉素,复合物呈湿粉状
表1 6组不同浓度样品的最大压力载荷和最大剪切力载荷比较(±s)
图3 空白骨水泥洗脱液、美罗培南标准品储备液和美罗培南骨水泥洗脱液色谱图。图A为空白骨水泥对照组洗脱液;图B为874.7850 μg/ml浓度的美罗培南标准品储备液;图C为A4组美罗培南骨水泥样品37.0 ℃恒温条件下浸渍12 d洗脱液
图4 美罗培南骨水泥洗脱液的时间-药物浓度曲线
[1]
Mandell JB, Orr S, Koch J, et al. Large variations in clinical antibiotic activity against staphylococcus aureus biofilms of periprosthetic joint infection isolates[J]. J Orthop Res, 2019, 37(7): 1604-1609.
[2]
Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections[J]. Science, 1999, 284(5418): 1318-1322.
[3]
Konrads C, Franz A, Hoberg M, et al. Similar outcomes of two-stage revisions for infection and one-stage revisions for aseptic revisions of knee endoprostheses[J]. J Knee Surg, 2019, 32(9): 897-899.
[4]
Akhtar A, Mitchell C, Assis C, et al. Cement pedestal spacer technique for infected two-stage revision knee arthroplasty: description and comparison of complications[J]. Indian J Orthop, 2019, 53(6): 695-699.
[5]
Biring GS, Kostamo T, Garbuz DS, et al. Two-stage revision arthroplasty of the hip for infection using an interim articulated Prostalac hip spacer: a 10- to 15-year follow-up study[J]. J Bone Joint Surg Br, 2009, 91(11): 1431-1437.
[6]
Dufour S, Piroth L, Chirouze C, et al. Staphylococcus aureus bloodstream infection in patients with prosthetic joints in the prospective VIRSTA cohort study: frequency and time of occurrence of periprosthetic joint infection[J/OL]. Open Forum Infect Dis, 2019, 6(12): ofz515. doi: 10.1093/ofid/ofz515.
[7]
Fagotti L, Tatka J, Salles M, et al. Risk factors and treatment options for failure of a two-stage exchange[J]. Curr Rev Musculoskelet Med, 2018, 11(3): 420-427.
[8]
Fantoni M, Borrè S, Rostagno R, et al. Epidemiological and clinical features of prosthetic joint infections caused by gram-negative bacteria [J]. Eur Rev Med Pharmacol Sci, 2019, 23(2 Suppl): 187-194.
[9]
Kierzkowska M, Pedzisz P, Babiak I, et al. Orthopedic infections caused by obligatory anaerobic gram-negative rods: report of two cases[J]. Med Microbiol Immunol, 2017, 206(5): 363-366.
[10]
Zafar Y, Elkafrawy AA, Nahar J, et al. Acalculous cholecystitis presenting as a septic joint: a case report[J/OL]. Cureus, 2019, 11(7): e5193.doi: 10.7759/cureus.5193.
[11]
Boelch SP, Rueckl K, Fuchs C, et al. Comparison of elution characteristics and compressive strength of bi-antibiotic-loaded PMMA bone cement for spacers: copal® spacem with gentamicin and vancomycin versus palacos® R+G with vancomycin[J/OL]. Biomed Res Int, 2018, 2018: 4323518. doi: 10.1155/2018/4323518.
[12]
Al-Tawfiq JA, Rabaan AA, Saunar JV, et al. Antimicrobial resistance of gram-negative bacteria: a six-year longitudinal study in a hospital in Saudi Arabia[J]. J Infect Public Health, 2020, 13(5): 737-745.
[13]
Chinowaita F, Chaka W, Nyazika TK, et al. Sepsis in cancer patients residing in Zimbabwe: spectrum of bacterial and fungal aetiologies and their antimicrobial susceptibility patterns[J/OL]. BMC Infect Dis, 2020, 20(1): 161. doi: 10.1186/s12879-020-4886-2.
[14]
Mendez AS, Dalomo J, Steppe M, et al. Stability and degradation kinetics of meropenem in powder for injection and reconstituted sample[J]. J Pharm Biomed Anal, 2006, 41(4): 1363-1366.
[15]
An, Ogbuagu VI, Ejikeugwu CP, et al. Multi-antibiotic resistance and factors affecting carriage of extended spectrum β-lactamase-producing enterobacteriaceae in pediatric population of Enugu Metropolis, Nigeria[J/OL]. Med Sci (Basel), 2019, 7(11): 104. doi: 10.3390/medsci7110104.
[16]
Baleani M, Persson C, Zolezzi C, et al. Biological and biomechanical effects of vancomycin and meropenem in acrylic bone cement[J]. J Arthroplasty, 2008, 23(8): 1232-1238.
[17]
Samuel S, Mathew BS, Veeraraghavan B, et al. In vitro study of elution kinetics and bio-activity of meropenem-loaded acrylic bone cement[J]. J Orthop Traumatol, 2012, 13(3): 131-136.
[18]
Andollina A, Bertoni G, Bertoni F, et al. Vancomycin and meropenem in acrylic cement: elution kinetics of in vitro bactericidal action[J]. Chir Organi Mov, 2008, 91(3): 153-158.
[19]
Chen AF, Parvizi J. Antibiotic-loaded bone cement and periprosthetic joint infection[J]. J Long Term Eff Med Implants, 2014, 24(2/3): 89-97.
[20]
Hinarejos P, Guirro P, Puig-Verdie L, et al. Use of antibiotic-loaded cement in total knee arthroplasty[J]. World J Orthop, 2015, 6(11): 877-885.
[21]
Sukur E, Akar A, Topcu HN, et al. The effect of N-acetylcysteine on mechanical fatigue resistance of antibiotic-loaded bone cement[J/OL]. J Orthop Surg Res, 2018, 13(1): 132. doi: 10.1186/s13018-018-0843-9.
[22]
Aimiya K, Mamiya T, Tabuchi K, et al. Comparison of twice a day and three times a day meropenem administration in elderly patients in a Japanese community hospital[J]. Nagoya J Med Sci, 2018, 80(3): 391-400.
[23]
Decousser JW, Woerther PL, Soussy CJ, et al. The tigecycline evaluation and surveillance trial; assessment of the activity of tigecycline and other selected antibiotics against gram-positive and gram-negative pathogens from France collected between 2004 and 2016[J/OL]. Antimicrob Resist Infect Control, 2018, 7: 68. doi: 10.1186/s13756-018-0360-y.
[24]
Jiménez A, Sánchez A, Rey A, et al. Recovery of aerobic and anaerobic bacteria from patients with acute appendicitis using blood culture bottles[J]. Biomedica, 2019, 39(4): 699-706.
[25]
Persson C, Baleani M, Guandalini L, et al. Mechanical effects of the use of vancomycin and meropenem in acrylic bone cement[J]. Acta Orthop, 2006, 77(4): 617-621.
[26]
Li T, Fu L, Wang J, et al. High dose of vancomycin plus gentamicin incorporated acrylic bone cement decreased the elution of vancomycin[J]. Infect Drug Resist, 2019, 12: 2191-2199.
[27]
Paz E, Sanz-Ruiz P, Abenojar J, et al. Evaluation of elution and mechanical properties of high-dose antibiotic-loaded bone cement: comparative " in vitro" study of the influence of vancomycin and cefazolin[J]. J Arthroplasty, 2015, 30(8): 1423-1429.
[28]
Bishop AR, Kim S, Squire MW, et al. Vancomycin elution, activity and impact on mechanical properties when added to orthopedic bone cement[J/OL]. J Mech Behav Biomed Mater, 2018, 87: 80-86. doi: 10.1016/j.jmbbm.2018.06.033.
[29]
Gálvez-López R, Peña-Monje A, Antelo-Lorenzo R, et al. Elution kinetics, antimicrobial activity, and mechanical properties of 11 different antibiotic loaded acrylic bone cement[J]. Diagn Microbiol Infect Dis, 2014, 78(1): 70-74.
[30]
Yang C, Wang J, Yin Z, et al. A sophisticated antibiotic-loading protocol in articulating cement spacers for the treatment of prosthetic joint infection: a retrospective cohort study[J]. Bone Joint Res, 2019, 8(11): 526-534.
[1] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[2] 郭璐琦, 赵雅琦, 李霁欣, 周兰, 林金鹏, 张子砚, 李俊杰, 王少白. 免荷矫形器对膝骨关节炎的生物力学影响的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 560-565.
[3] 刘晓彬, 朱峰. 危重烧伤患者肾功能亢进的药物治疗[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 260-264.
[4] 李晓玉, 江庆, 汤海琴, 罗静枝. 围手术期综合管理对胆总管结石并急性胆管炎患者ERCP +LC术后心肌损伤的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 57-60.
[5] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[6] 郝超, 黄骥, 吴高亮, 郭维炜, 涂新华. 机器人辅助腹腔镜体内原位U形回肠新膀胱术的临床疗效观察及尿动力分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(01): 11-15.
[7] 许潇洁, 俞萍. 经阴道子宫全切术联合阴道前壁修补术对子宫脱垂疗效研究[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(02): 209-212.
[8] 李祥魁, 薛玉荣, 丁凯, 孔劲松. ESPB、SAPB、TPVB对胸腔镜微创术血流动力学、应激反应的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 245-247.
[9] 王英, 薛意恒, 刘国勤. 肠系膜下动脉-高位结扎后降乙结肠血流通路重建机制研究方法的探索历程[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 265-271.
[10] 杨新宇, 彭建文, 李辉萍, 陶希, 方翠霓, 宋涛. 脑电非线性分析在卒中后意识障碍的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 185-190.
[11] 王姗姗, 徐小汝, 史振仙, 张德杰. 丹参多酚酸联合尤瑞克林治疗急性分水岭脑梗死的疗效及对认知功能、脑血流动力学和血清LPA、ox-LDL、MMP-9水平的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 142-149.
[12] 李田利, 张照龙, 孙成建, 刘国平, 谢宜兴, 赵晓龙, 邵黎明, 郑璇, 王长鑫, 徐锐. 基于血流动力学、血脂及外周血炎症标志物的眼段动脉瘤破裂风险相关研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 78-83.
[13] 陈晓琴, 李星江, 胡涛, 赵金义, 薛培源, 刘伟, 王崇, 胡明成. 椎基底动脉迂曲扩张症的计算流体力学分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(01): 21-25.
[14] 王彦旭, 何益港, 秦永林. 计算流体力学研究B型主动脉夹层中4D Flow MRI的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(02): 159-163.
[15] 于乾雪, 廖学梅, 孙龙龙, 范梦莹, 蒋明超, 孟慧, 李瑞基. 线粒体功能障碍与卵巢早衰的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 283-288.
阅读次数
全文


摘要