切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2019, Vol. 13 ›› Issue (04) : 466 -472. doi: 10.3877/cma.j.issn.1674-134X.2019.04.014

所属专题: 文献

综述

距骨骨软骨损伤的治疗研究进展
张成昌1, 杨柳1, 段小军1,()   
  1. 1. 400038 重庆,陆军军医大学第一附属医院(西南医院)关节外科中心
  • 收稿日期:2018-04-10 出版日期:2019-08-01
  • 通信作者: 段小军
  • 基金资助:
    重庆市科委民生科技专项(cstc2016shmszx130069); 西南医院临床新技术计划项目(SWH2016BZGFGJJ-02)

Therapeutic advances of osteochondral lesions of talus

Chengchang Zhang1, Liu Yang1, Xiaojun Duan1,()   

  1. 1. Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
  • Received:2018-04-10 Published:2019-08-01
  • Corresponding author: Xiaojun Duan
  • About author:
    Corresponding author: Duan Xiaojun, Email:
引用本文:

张成昌, 杨柳, 段小军. 距骨骨软骨损伤的治疗研究进展[J]. 中华关节外科杂志(电子版), 2019, 13(04): 466-472.

Chengchang Zhang, Liu Yang, Xiaojun Duan. Therapeutic advances of osteochondral lesions of talus[J]. Chinese Journal of Joint Surgery(Electronic Edition), 2019, 13(04): 466-472.

距骨骨软骨损伤是运动医学中具有挑战性的疾病之一。临床治疗策略包括保守治疗和手术治疗,保守治疗在儿童患者中效果最佳,对于成人患者常常选择进行手术治疗。目前常见的外科手术治疗方案包括关节镜下骨髓刺激、自体软骨细胞植入、自体骨软骨移植、同种异体骨软骨移植或同种异体青少年软骨微粒移植等。关节镜下骨髓刺激技术(特别是微骨折)适用于较小的病灶,是常见的一线治疗方案,中短期临床疗效令人满意,但长期疗效有待进一步观察。自体骨软骨移植常用于伴有较大囊性病变的距骨骨软骨损伤患者,有着较好的中短期临床疗效,然而术后存在囊肿复发和供区并发症的发生。近年来有大量文献报道其他生物治疗措施,如骨软骨损伤区域注射富含血小板血浆、或者浓缩骨髓细胞等,均有一定的临床疗效。本文对这些技术的应用细节和疗效进行综述,目的是为临床医生能够更好地治疗距骨骨软骨损伤提供依据。

Osteochondral lesions of the talus is one of the challenging diseases in sports medicine. Conservative treatment is often used in pediatric patients. Surgical options are often applied for adult populations whose symptoms may persist with conservative treatment. The current surgical options include arthroscopic subchondral bone marrow stimulation, autologous chondrocyte implantation, autologous osteochondral transplantation, allograft cartilage transplantation or particulated juvenile cartilage allograft transplantation. Arthroscopic bone marrow stimulation (especially microfracture) is the first-line treatment for smaller noncystic lesions. The short- and medium-term of clinical results is good; however, there is a lack of long-term evidence. Autologous osteochondral transplantation applied for lesions with greater area or for cystic lesions. It has showed good short- to medium-term results. However, the subchondral cysts and donor site complication often occurred after surgery. Recent developments have reported the clinical effectiveness of the biological adjuncts such as platelet-rich plasma and concentrated bone marrow aspirate. The purpose of this article is to review the treatment of osteochondral lesions of the talus so that more efficiently treatment strategies can be used by clinicians.

[1]
Mankin HJ. The response of articular cartilage to mechanical injury[J]. J Bone Joint Surg Am, 1982, 64(3): 460-466.
[2]
Chew KT, Tay E, Wong YS. Osteochondral lesions of the talus[J]. Ann Acad Med Singapore, 2008, 37(1): 63-68.
[3]
Easley ME, Latt LD, Santangelo JR, et al. Osteochondral lesions of the talus[J]. J Am Acad Orthop Surg, 2010, 18(10): 616-630.
[4]
Berndt AL, Harty M. Transchondral fractures (osteochondritis dissecans) of the talus[J]. J Bone Joint Surg Am, 1959, 41(6): 988-1020.
[5]
Elias I, Zoga AC, Morrison WB, et al. Osteochondral lesions of the talus: localization and morphologic data from 424 patients using a novel anatomical grid scheme [J]. Foot Ankle Int, 2007, 28(2): 154-161.
[6]
Millington SA, Grabner M, Wozelka R, et al. Quantification of ankle articular cartilage topography and thickness using a high resolution stereophotography system [J]. Osteoarthritis Cartilage, 2007, 15(2): 205-211.
[7]
Chuckpaiwong B, Berkson EM, Theodore GH. Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases [J]. Arthroscopy, 2008, 24(1): 106-112.
[8]
Schimmer RC, Dick W, Hintermann B. The role of ankle arthroscopy in the treatment strategies of osteochondritis dissecans lesions of the talus [J]. Foot Ankle Int, 2001, 22(11): 895-900.
[9]
Choi WJ, Choi GW, Kim JS, et al. Prognostic significance of the containment and location of osteochondral lesions of the talus: independent adverse outcomes associated with uncontained lesions of the talar shoulder [J]. Am J Sports Med, 2013, 41(1): 126-133.
[10]
Dragoni M, Bonasia DE, Amendola A. Osteochondral talar allograft for large osteochondral defects: technique tip [J]. Foot Ankle Int, 2011, 32(9): 910-916.
[11]
Forney MC, Gupta A, Minas T, et al. Magnetic resonance imaging of cartilage repair procedures[J]. Magn Reson Imaging Clin N Am, 2014, 22(4): 671-701.
[12]
Battaglia M, Rimondi E, Monti C, et al. Validity of T2 mapping in characterization of the regeneration tissue by bone marrow derived cell transplantation in osteochondral lesions of the ankle[J/OL]. Eur J Radiol, 2011, 80(2): e132-e139. doi: 10.1016/j.ejrad.2010.08.008.
[13]
Easley ME, Scranton PJ. Osteochondral autologous transfer system[J]. Foot Ankle Clin, 2003, 8(2): 275-290.
[14]
Shearer C, Loomer R, Clement D. Nonoperatively managed stage 5 osteochondral talar lesions[J]. Foot Ankle Int, 2002, 23(7): 651-654.
[15]
Tol JL, Struijs PA, Bossuyt PM, et al. Treatment strategies in osteochondral defects of the talar dome: a systematic review[J]. Foot Ankle Int, 2000, 21(2): 119-126.
[16]
D'ambrosi R, Maccario C, Serra N, et al. Relationship between symptomatic osteochondral lesions of the talus and quality of life, body mass index, age, size and anatomic location[J]. Foot Ankle Surg, 2018, 24(4): 365-372.
[17]
Becher C, Driessen A, Hess T, et al. Microfracture for chondral defects of the talus: maintenance of early results at midterm follow-up [J]. Knee Surg Sports Traumatol Arthrosc, 2010, 18(5): 656-663.
[18]
Smyth NA, Murawski CD, Haleem AM, et al. Establishing proof of concept: platelet-rich plasma and bone marrow aspirate concentrate may improve cartilage repair following surgical treatment for osteochondral lesions of the talus [J]. World J Orthop, 2012, 3(7): 101-108.
[19]
Buckwalter JA, Mow VC, Ratcliffe A. Restoration of injured or degenerated articular cartilage[J]. J Am Acad Orthop Surg, 1994, 2(4): 192-201.
[20]
Hannon CP, Ross KA, Murawski CD, et al. Arthroscopic bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes[J]. Arthroscopy, 2016, 32(2): 339-347.
[21]
Min BH, Choi WH, Lee YS, et al. Effect of different bone marrow stimulation techniques (BSTs) on MSCs mobilization[J]. J Orthop Res, 2013, 31(11): 1814-1819.
[22]
Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects [J]. Clin Orthop Relat Res, 2001, 391(Suppl): S362-S369.
[23]
Chen H, Sun J, Hoemann CD, et al. Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair [J]. J Orthop Res, 2009, 7(11): 432-1438.
[24]
Choi WJ, Park KK, Kim BS, et al. Osteochondral lesion of the talus: is there a critical defect size for poor outcome? [J]. Am J Sports Med, 2009, 37(10): 1974-1980.
[25]
Zengerink M, Struijs PA, Tol JL, et al. Treatment of osteochondral lesions of the talus: a systematic review[J]. Knee Surg Sports Traumatol Arthrosc, 2010, 18(2): 238-246.
[26]
Ramponi L, Yasui Y, Murawski CD, et al. Lesion size is a predictor of clinical outcomes after bone marrow stimulation for osteochondral lesions of the talus: a systematic review[J]. Am J Sports Med, 2017, 45(7): 1698-1705.
[27]
Schuman L, Struijs PA, van Dijk CN. Arthroscopic treatment for osteochondral defects of the talus. Results at follow-up at 2 to 11 years[J]. J Bone Joint Surg Br, 2002, 84(3): 364-368.
[28]
Ferkel RD, Zanotti RM, Komenda GA, et al. Arthroscopic treatment of chronic osteochondral lesions of the talus: long-term results[J]. Am J Sports Med, 2008, 36(9): 1750-1762.
[29]
Shimozono Y, Coale M, Yasui Y, et al. Subchondral bone degradation after microfracture for osteochondral lesions of the talus: an MRI analysis[J]. Am J Sports Med, 2018, 46(3): 642-648.
[30]
Pomajzl RJ, Baker EA, Baker KC, et al. Case series with histopathologic and radiographic analyses following failure of fresh osteochondral allografts of the talus[J]. Foot Ankle Int, 2016, 37(9): 958-967.
[31]
Kennedy JG, Murawski CD. The treatment of osteochondral lesions of the talus with autologous osteochondral transplantation and bone marrow aspirate concentrate: surgical technique[J]. Cartilage, 2011, 2(4): 327-336.
[32]
Scranton PJ, Frey CC, Feder KS. Outcome of osteochondral autograft transplantation for type-V cystic osteochondral lesions of the talus [J]. J Bone Joint Surg Br, 2006, 88(5): 614-619.
[33]
Al-Shaikh RA, Chou LB, Mann JA, et al. Autologous osteochondral grafting for talar cartilage defects[J]. Foot Ankle Int, 2002, 23(5): 381-389.
[34]
Park KH, Hwang Y, Han SH, et al. Primary versus secondary osteochondral autograft transplantation for the treatment of large osteochondral lesions of the talus[J]. Am J Sports Med, 2018, 46(6): 1389-1396.
[35]
Haraguchi N, Ota K, Nishida N, et al. T1ρ mapping of articular cartilage grafts after autologous osteochondral transplantation for osteochondral lesions of the talus: a longitudinal evaluation[J]. J Magn Reson Imaging, 2018, 48(2): 398-403.
[36]
Valderrabano V, Leumann A, Rasch H, et al. Knee-to-ankle mosaicplasty for the treatment of osteochondral lesions of the ankle joint[J]. Am J Sports Med, 2009, 37(1): 105S-111S.
[37]
Coetzee JC, Giza E, Schon LC, et al. Treatment of osteochondral lesions of the talus with particulated juvenile cartilage[J]. Foot Ankle Int, 2013, 34(9): 1205-1211.
[38]
DeSandis BA, Haleem AM, Sofka CM, et al. Arthroscopic treatment of osteochondral lesions of the talus using juvenile articular cartilage allograft and autologous bone marrow aspirate concentration[J]. J Foot Ankle Surg, 2018, 57(2): 273-280.
[39]
Dekker TJ, Steele JR, Federer AE, et al. Efficacy of particulated juvenile cartilage allograft transplantation for osteochondral lesions of the talus [J]. Foot Ankle Int, 2018, 39(3): 278-283.
[40]
Giza E, Sullivan M, Ocel D, et al. Matrix-induced autologous chondrocyte implantation of talus articular defects[J]. Foot Ankle Int, 2010, 31(9): 747-753.
[41]
Schneider TE, Karaikudi S. Matrix-induced autologous chondrocyte implantation (MACI) grafting for osteochondral lesions of the talus[J]. Foot Ankle Int, 2009, 30(9): 810-814.
[42]
Kanatl U, Eren A, Eren TK, et al. Single-step arthroscopic repair with cell-free polymer-based scaffold in osteochondral lesions of the talus: clinical and radiological results[J]. Arthroscopy, 2017, 33(9): 1718-1726.
[43]
Wiewiorski M, Miska M, Kretzschmar M, et al. Delayed gadolinium-enhanced MRI of cartilage of the ankle joint: results after autologous matrix-induced chondrogenesis (AMIC)-aided reconstruction of osteochondral lesions of the talus[J]. Clin Radiol 2013; 68(10): 1031-1038.
[44]
Buda R, Vannini F, Cavallo M, et al. One-step bone marrow-derived cell transplantation in talarosteochondral lesions: mid-term results[J]. Joints, 2013, 1(3): 102-107.
[45]
Giannini S, Buda R, Vannini F, et al. One-step bone marrow-derived cell transplantation in talar osteochondral lesions[J]. Clin Orthop Relat Res, 2009, 467(12): 3307-3320.
[46]
Shimozono Y, Yasui Y, Ross AW, et al. Scaffolds based therapy for osteochondral lesions of the talus: a systematic review[J]. World J Orthop, 2017, 8(10): 798-808.
[47]
Yasui Y, Wollstein A, Murawski CD, et al. Operative treatment for osteochondral lesions of the talus: biologics and saffold-based therapy[J]. Cartilage, 2017, 8(1): 42-49.
[48]
Morales TI, Kuettner KE, Howell DS, et al. Characterization of the metalloproteinase inhibitor produced by bovine articular chondrocyte cultures[J]. Biochim Biophys Acta, 1983, 760(2): 221-229.
[49]
Redini F, Galera P, Mauviel A, et al. Transforming growth factor beta stimulates collagen and glycosaminoglycan biosynthesis in cultured rabbit articular chondrocytes[J]. FEBS Lett, 1988, 234(1): 172-176.
[50]
Canale ST, Belding RH. Osteochondral lesions of the talus[J]. J Bone Joint Surg Am, 1980, 62(1): 97-102.
[51]
Fortier LA, Potter HG, Rickey EJ, et al. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model[J]. J Bone Joint Surg Am, 2010, 92(10): 1927-1937.
[52]
Giannini S, Buda R, Cavallo M, et al. Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation[J]. Injury, 2010, 41(11): 1196-1203.
[53]
Gao F, Chen N, Sun W, et al. Combined therapy with shock wave and retrograde bone marrow-derived cell transplantation for osteochondral lesions of the talus[J]. Sci Rep, 2017, 7(1): 2106-2116.
[54]
Engebretsen L, Steffen K, Alsousou J, et al. IOC consensus paper on the use of platelet-rich plasma in sports medicine[J]. Br J Sports Med, 2010, 44(15): 1072-1081.
[55]
Zhu Y, Yuan M, Meng H Y, et al. Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review[J]. Osteoarthritis Cartilage, 2013, 21(11): 1627-1637.
[56]
Murawski CD, Kennedy JG. Bone marrow aspirate concentrate and platelet-rich plasma as biological adjuncts to the surgical treatment of osteochondral lesions of the talus [J]. Techniques Orthop, 2011, 26(1): 22-27.
[57]
Wu CC, Chen WH, Zao B, et al. Regenerative potentials of platelet-rich plasma enhanced by collagen in retrieving pro-inflammatory cytokine-inhibited chondrogenesis[J]. Biomaterials, 2011, 32(25): 5847-5854.
[58]
Sun Y, Feng Y, Zhang CQ, et al. The regenerative effect of platelet-rich plasma on healing in large osteochondral defects [J]. Int Orthop, 2010, 34(4): 589-597.
[59]
Milano G, Sanna PE, Deriu L, et al. The effect of platelet rich plasma combined with microfractures on the treatment of chondral defects: an experimental study in a sheep model[J]. Osteoarthritis Cartilage, 2010, 18(7): 971-980.
[60]
Mei-Dan O, Carmont MR, Laver L, et al. Platelet-rich plasma or hyaluronate in the management of osteochondral lesions of the talus[J]. Am J Sports Med. 2012, 40(3): 534-541.
[61]
Angthong C, Khadsongkram A, Angthong W. Outcomes and quality of life after platelet-rich plasma therapy in patients with recalcitrant hindfoot and ankle diseases: a preliminary report of 12 patients[J]. J Foot Ankle Surg 2013, 52(4): 475-480.
[62]
Jazzo SF, Scribner D, Shay S, et al. Patient-reported outcomes following platelet-rich plasma injections in treating osteochondral lesions of the talus: a critically appraised topic[J]. J Sport Rehabil, 2018, 27(2): 177-184.
[63]
Silva A, Sampaio R. Anatomic ACL reconstruction: does the platelet-rich plasma accelerate tendon healing? [J]. Knee Surg Sports Traumatol Arthrosc, 2009, 17(6): 676-682.
[64]
Kon E, Buda R, Filardo G, et al. Platelet-rich plasma: intra-articular knee injections produced favorable results on degenerative cartilage lesions[J]. Knee Surg Sports Traumatol Arthrosc, 2010, 18(4): 472-479.
[1] 中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(06): 751-764.
[2] 尚培中, 张润萍, 张伟, 贾国洪, 李晓武, 苗建军, 刘冰. 梗阻性黄疸临床防治新技术单中心应用研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 104-107.
[3] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[4] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[5] 李晓玉, 江庆, 汤海琴, 罗静枝. 围手术期综合管理对胆总管结石并急性胆管炎患者ERCP +LC术后心肌损伤的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 57-60.
[6] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[7] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[8] 许丁伟, 马江云, 李新成, 黄洁. Alagille综合征疑诊为先天性胆道闭锁一例并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 681-687.
[9] 崔佳琪, 吴迪, 陈海艳, 周惠敏, 顾元龙, 周光文, 杨军. TACE术后并发肝脓肿的临床诊治分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 688-693.
[10] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[11] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[12] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[13] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[14] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[15] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
阅读次数
全文


摘要