切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2025, Vol. 19 ›› Issue (02) : 200 -206. doi: 10.3877/ cma.j.issn.1674-134X.2025.02.010

综述

痛风的免疫和炎症机制最新进展
颜琪1, 赵志军2, 张斌斌1, 魏蜀青1, 窦斌1, 李克文3,()   
  1. 1. 810000 西宁,青海大学临床医学院
    2. 810000 西宁,青海省地方病预防控制所
    3. 810000 西宁,青海大学附属医院
  • 收稿日期:2024-11-15 出版日期:2025-04-01
  • 通信作者: 李克文
  • 基金资助:
    2023年度青海省“昆仑英才·科技领军人才”项目(青人才字[2024]1号)

Recent advances in immune and inflammatory mechanisms of gout

Qi Yan1, Zhijun Zhao2, Binbin Zhang1, Shuqing Wei1, Bin Dou1, Kewen Li3,()   

  1. 1. Clinical Medical College of Qinghai University, Xining 810000,China
    2. Qinghai Provincial Institute for Endemic Disease Prevention and Control, Xining 810000, China
    3. Affiliated Hospital of Qinghai University, Xining 810000,China
  • Received:2024-11-15 Published:2025-04-01
  • Corresponding author: Kewen Li
引用本文:

颜琪, 赵志军, 张斌斌, 魏蜀青, 窦斌, 李克文. 痛风的免疫和炎症机制最新进展[J/OL]. 中华关节外科杂志(电子版), 2025, 19(02): 200-206.

Qi Yan, Zhijun Zhao, Binbin Zhang, Shuqing Wei, Bin Dou, Kewen Li. Recent advances in immune and inflammatory mechanisms of gout[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2025, 19(02): 200-206.

痛风是一种自身炎症性疾病,其特征是由于尿酸单钠晶体沉淀而引起的急性或慢性炎症和骨关节损伤。近年的研究表明,在痛风的发病过程中,多种免疫细胞如巨噬细胞和T淋巴细胞在痛风的发生发展及逆转过程中发挥着关键的作用,一些炎性细胞因子,如白细胞介素-1家族中的细胞因子,已被证明在痛风性炎症中发挥抗炎或促炎作用,但具体机制不明。本文拟从免疫细胞及炎症因子在痛风发生发展中的作用入手,为进一步阐明痛风的发病机理提供新的思路。

Gout is an autoinflammatory disease characterized by acute or chronic inflammation and osteoarticular damage due to precipitation of monosodium urate crystals. Recent studies have shown that a variety of immune cells such as macrophages and T lymphocytes play a key role in the occurrence,development and reversal of gout in the pathogenesis of gout, and some inflammatory cytokines, such as those in the interleukin-1 family, have been shown to play anti-inflammatory or proinflammatory roles in gouty inflammation, but the specific mechanism is unknown. This article aimed to start from the role of immune cells and inflammatory factors in the occurrence and development of gout, and provide new ideas for further elucidating the pathogenesis of gout.

[1]
韦志明, 方汉军, 李中峰, 等. 痛风性膝关节炎的手术治疗进展[J/OL]. 中华关节外科杂志( 电子版), 2022, 16( 3 ): 343-347.
[2]
Dalbeth N, Gosling AL, Gaffo A, et al. Gout[J]. Lancet, 2021, 397( 10287 ): 1843-1855.
[3]
方宁远,吕力为,吕晓希,等.中国高尿酸血症相关疾病诊疗多学科专家共识(2023年版)[J].中国实用内科杂志, 2023, 43( 06 ):461-480.
[4]
Cabău G, Crișan TO, Klück V, et al. Urate-induced immune programming: consequences for gouty arthritis and hyperuricemia [J].Immunol Rev, 2020, 294( 1 ): 92-105.
[5]
Wang C, Ma C, Gong L, et al. Macrophage polarization and its role in liver disease[J/OL]. Front Immunol, 2021, 12: 803037.DOI:10.3389/fimmu.2021.803037.
[6]
Bousoik E, Qadri M, Elsaid KA. CD44 receptor mediates urate crystal phagocytosis by macrophages and regulates inflammation in A murine peritoneal model of acute gout[J/OL]. Sci Rep, 2020, 10( 1 ): 5748. DOI:10.1038/s41598-020-62727-z.
[7]
Michalick L,Kuebler WM. TRPV4-a missing link between mechanosensation and immunity[J/OL]. Front Immunol, 2020, 11:413. DOI:10.3389/fimmu.2020.00413.
[8]
Lan Z, Chen L, Feng J, et al. Mechanosensitive TRPV4 is required for crystal-induced inflammation [J]. Ann Rheum Dis, 2021, 80( 12 ): 1604-1614.
[9]
Silva CR, Saraiva AL, Rossato MF, et al. What do we know about toll-like receptors involvement in gout arthritis?[J]. Endocr Metab Immune Disord Drug Targets, 2023, 23( 4 ): 446-457.
[10]
Zhao J, WeiK, JiangP, etal. Inflammatory response to regulated cell death in gout and its functional implications[J/OL]. Front Immunol,2022, 13: 888306. DOI:10.3389/fimmu.2022.888306.
[11]
CoboI, Cheng A, Murillo-Saich J, et al. Monosodium urate crystals regulate a unique JNK-dependent macrophage metabolic and inflammatory response[J/OL]. Cell Rep, 2022, 38( 10 ): 110489.DOI:10.1016/j.celrep.2022.110489.
[12]
Liu L, Zhu L, LiuM, etal. Recent insights into the role of macrophages in acute gout[J/OL]. Front Immunol, 2022,13:955806.DOI:10.3389/fimmu.2022.955806.
[13]
Zhao L, Ye W, Zhu Y, et al. Distinct macrophage polarization in acute and chronic gout[J]. Lab Invest, 2022, 102( 10 ): 1054-1063.
[14]
Klück V, Cabău G, Mies L, et al. TGF-β is elevated in hyperuricemic individuals and mediates urate-induced hyperinflammatory phenotype in human mononuclear cells[J/OL]. Arthritis Res Ther,2023, 25( 1 ): 30. DOI:10.1186/s13075-023-03001-1.
[15]
Silvestre-Roig C, Fridlender ZG, Glogauer M, et al. Neutrophil diversity in health and disease[J]. Trends Immunol, 2019, 40( 7 ):565-583.
[16]
Papayannopoulos V. Neutrophil extracellular traps in immunity and disease[J]. Nat Rev Immunol, 2018, 18( 2 ): 134-147.
[17]
Huang J, Hong W, Wan M, et al. Molecular mechanisms and therapeutic target of NETosis in diseases[J/OL]. Med Comm, 2022,3( 3 ): e162. DOI:10.1002/mco2.162.
[18]
Tang H, Tan C, Cao X, et al. NFIL3 facilitates neutrophil autophagy,neutrophil extracellular trap formation and inflammation during gout via REDD1-dependent mTOR inactivation[J/OL]. Front Med,2021, 8: 692781. DOI:10.3389/fmed. 2021.692781.
[19]
Tan H, Li Z, Zhang S, et al. Novel perception of neutrophil extracellular traps in gouty inflammation[J/OL]. Int Immunopharmacol, 2023,115: 109642.DOI:10.1016/j.intimp.2022.109642.
[20]
Tatsiy O, Mayer TZ, de Carvalho Oliveira V, et al. Cytokine production and NET formation by monosodium urate-activated human neutrophils involves early and late events, and requires upstream TAK1 and syk[J/OL]. Front Immunol, 2019, 10: 2996.DOI:10.3389/fimmu.2019.02996.
[21]
Yin C, Liu B, Li Y, et al. IL-33/ST2 induces neutrophil-dependent reactive oxygen species production and mediates gout pain[J].Theranostics, 2020, 10( 26 ): 12189-12203.
[22]
Reber LL, Gaudenzio N, Starkl P, et al. Neutrophils are not required for resolution of acute gouty arthritis in mice[J]. Nat Med, 2016, 22( 12 ): 1382-1384.
[23]
Garcia-Gonzalez E, Gamberucci A, LucheriniOM, et al. Neutrophil extracellular traps release in gout and pseudogout depends on the number of crystals regardless of leukocyte count[J]. Rheumatology,2021, 60( 10 ): 4920-4928.
[24]
Cumpelik A, Ankli B,Zecher D, et al. Neutrophil microvesicles resolve gout by inhibiting C5a-mediated priming of the inflammasome[J]. Ann Rheum Dis, 2016, 75( 6 ): 1236-1245.
[25]
Sharabi A,Tsokos GC. T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy[J]. Nat Rev Rheumatol, 2020, 16( 2 ): 100-112.
[26]
Wang B, Chen S, Qian H, et al. Role of T cells in the pathogenesis and treatment of gout[J/OL]. IntImmunopharmacol, 2020,88:106877. DOI:10.1016/j.intimp.2020.106877.
[27]
Zhao LJ, Wang H, Gao HY, et al. Increase in different peripheral effector T subsets in acute and chronic gout[J/OL]. TransplImmunol,2023, 76:101763. DOI:10.1016/j.trim.2022.101763.
[28]
Luo G, Yi T, Zhang G, et al. Increased circulating Th22 cells in patients with acute gouty arthritis: a CONSORT-compliant article[J/OL]. Medicine, 2017, 96( 42 ): e8329. DOI:10.1097/MD.0000000000008329.
[29]
Liu X, Li Y, Li Z, et al. A novel IgG1 monoclonal antibody against xanthine oxidase alleviates inflammation induced by potassium oxonate in mice[J]. Int J Biol Macromol, 2018, 112: 537-547.
[30]
Wang H, Xie L, Song X, et al. Purine-induced IFN-γ promotes uric acid production by upregulating xanthine oxidoreductase expression[J/OL]. Front Immunol, 2022, 13:773001. DOI:10.3389/fimmu.2022.773001.
[31]
Dai XJ, Tao JH, Fang X, et al. Changes of treg/Th17 ratio in spleen of acute gouty arthritis rat induced by MSU crystals[J].Inflammation, 2018, 41( 5 ): 1955-1964.
[32]
Raucci F, Iqbal AJ, Saviano A, et al. IL-17A neutralizing antibody regulates monosodium urate crystal-induced gouty inflammation[J/OL]. Pharmacol Res, 2019, 147: 104351. DOI:10.1016/j.phrs.2019.104351.
[33]
Saviano A, Raucci F, Casillo GM, et al. Anti-inflammatory and immunomodulatory activity of Mangiferaindica L. reveals the modulation of COX-2/mPGES-1 axis and Th17/Tregratio[J/OL]. Pharmacol Res, 2022, 182:106283. DOI:10.1016/j.phrs.2022.106283.
[34]
Migliorini P, Italiani P, Pratesi F, et al. The IL-1 family cytokines and receptors in autoimmune diseases[J/OL]. Autoimmun Rev,2020, 19( 9 ): 102617. DOI:10.1016/j.autrev. 2020.102617.
[35]
Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity[J]. Immunol Rev, 2018, 281( 1 ): 8-27.
[36]
Choe JY, Jung HY, Park KY, et al. Enhanced p62 expression through impaired proteasomal degradation is involved in caspase-1 activation in monosodium urate crystal-induced interleukin-1β expression[J]. Rheumatology ( Oxford ), 2014, 53( 6 ): 1043-1053.
[37]
Heilig R, Dick MS, Sborgi L, et al. The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice[J]. Eur J Immunol, 2018, 48 ( 4 ):584-592.
[38]
Galvão I, Dias ACF, Tavares LD, et al. Macrophage migration inhibitory factor drives neutrophil accumulation by facilitating IL-1β production in a murine model of acute gout[J]. J Leukoc Biol, 2016,99( 6 ): 1035-1043.
[39]
Gross O, Yazdi AS, Thomas CJ, et al. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1[J].Immunity, 2012, 36( 3 ): 388-400.
[40]
Rider P, Carmi Y, Guttman O, et al. IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation[J]. J Immunol, 2011, 187( 9 ): 4835-4843.
[41]
Fattori V, Staurengo-Ferrari L, Zaninelli TH, et al. IL-33 enhances macrophage release of IL-1β and promotes pain and inflammation in gouty arthritis[J]. Inflamm Res, 2020, 69( 12 ): 1271-1282.
[42]
Shang K, Wei Y, Su Q, et al. IL-33 ameliorates the development of MSU-induced inflammation through expanding MDSCs-like cells[J/OL]. Front Endocrinol, 2019, 10: 36. DOI:10.3389/fendo.2019.00036.
[43]
Duan L, Huang Y, Su Q, et al. Potential of IL-33 for preventing the kidney injury via regulating the lipid metabolism in gout patients[J]. J Diabetes Res, 2016, 2016: 1028401.DOI:10.1155/2016/1028401.
[44]
Liu L, Xue Y, Zhu Y, et al. Interleukin 37 limits monosodium urate crystal-induced innate immune responses in human and murine models of gout[J]. Arthritis Res Ther, 2016, 18( 1 ): 268.DOI:10.1186/s13075-016-1167-y.
[45]
Ding L, Li H, Sun B, et al. Elevated interleukin-37 associated with tophus and pro-inflammatory mediators in Chinese gout patients[J/OL]. Cytokine, 2021, 141: 155468. DOI:10.1016/j.cyto.2021.155468.
[46]
Zeng M, Dang W, Chen B, et al. IL-37 inhibits the production of pro-inflammatory cytokines in MSU crystal-induced inflammatory response[J].Clin Rheumatol, 2016, 35( 9 ): 2251-2258.
[47]
KlückV, van DeurenRC, Cavalli G, et al. Rare genetic variants in interleukin-37 link this anti-inflammatory cytokine to the pathogenesis and treatment of gout[J]. Ann Rheum Dis, 2020, 79( 4 ): 536-544.
[48]
Zhao L, ZhaoT, Yang X, et al. IL-37 blocks gouty inflammation by shaping macrophages into a non-inflammatory phagocytic phenotype[J]. Rheumatology, 2022, 61( 9 ): 3841-3853.
[49]
杨智坚, 李奇. 白细胞介素-37与骨关节炎性疾病的研究进展[J/CD]. 中华关节外科杂志( 电子版 ), 2019, 13( 2 ): 200-205.
[1] 覃辉, 钟珊, 白凡, 李陈良, 罗伦. 关节镜术后冲击波干预对膝关节炎患者的影响[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 729-735.
[2] 张镝, 于聪祥, 索静. 阴道分泌物预成酶谱4项及阴道灌洗液白细胞介素-17、-23与高危型人乳头瘤病毒持续感染致病性的相关性研究[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(06): 652-658.
[3] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[4] 李沛, 张海龙, 茅佳洋, 徐大荣, 赵菁. 肝素结合蛋白与白细胞介素-6水平在儿童大叶性肺炎中的动态变化及其与病情的相关性[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(02): 84-95.
[5] 黄波翠, 蔡思铭, 古裕鸟, 庄秀娟, 钟娇霞, 吴小文, 霍开明. 哮喘患儿IL-10 基因多态性与肺功能及外周血Treg 细胞的相关性[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1003-1007.
[6] 马苗苗, 次苗苗, 寇振宇, 王斌锋, 和建武. 儿童急性下呼吸道感染血清hBD-2、MIP-1α、IL-13 与病情严重程度的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1008-1012.
[7] 董大红, 周明虎, 李芝朋, 许正峰. 碳青霉烯类抗生素联合呼吸机治疗肺部感染的临床疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 793-796.
[8] 刘齐, 郑晓汾. Ⅱ型固有淋巴细胞及其上游分子在过敏性结膜炎发病机制中作用的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(06): 368-374.
[9] 刘杰, 马毛毛, 高星星. 轻度胃肠炎伴婴幼儿良性惊厥患儿肠道菌群特征与血清NSE、NO、IL-1、IL-6 的关系[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 168-173.
[10] 王春莹, 江永强, 韩海静, 苏红霞, 李转, 党飞, 折彤, 屈耀宁. 血清SAA、sIL-2R水平与内镜逆行胰胆管造影术后胰腺炎严重程度的相关性及预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(01): 46-50.
[11] 薛伟, 祝华, 贾涛. 经腹超声黏膜下层指数结合hs-CRP、IL-6、IL-8对溃疡性结肠炎患者早期治疗效果的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(01): 55-59.
[12] 杨卫东, 周威, 向洪涛. 慢性萎缩性胃炎患者幽门螺杆菌感染与炎性细胞因子及病理特征的关系[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 459-464.
[13] 李润东, 豆小文, 张秀明. 失笑散联合胃复春治疗慢性萎缩性胃炎的疗效及对血清免疫受体和炎症因子水平的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 470-473.
[14] 唐诗, 薛传优, 叶兴, 张鸿举, 戴瑞. 急性病毒性肝炎患者血脂、血糖、蛋白、尿酸变化特点及其与预后的关联[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 396-399.
[15] 魏晓伟, 薛婧, 肇炜博, 史琳涛, 夏素影, 施瑾怡, 王静, 贾海英, 王爱红. 青年男性血清尿酸和尿酸/肌酐对代谢相关脂肪性肝病初筛价值的探讨[J/OL]. 中华临床医师杂志(电子版), 2024, 18(12): 1111-1117.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?