切换至 "中华医学电子期刊资源库"

中华关节外科杂志(电子版) ›› 2024, Vol. 18 ›› Issue (06) : 751 -758. doi: 10.3877/ cma.j.issn.1674-134X.2024.06.008

综述

软骨细胞来源外泌体对于软骨损伤修复的研究进展
黄晓芳1,2, 刘澍雨3, 黄子荣1, 胡艳1, 梁家敏1,2, 朱伟民1,()   
  1. 1.518035 深圳市第二人民医院(深圳大学第一附属医院)运动医学科
    2.518061 深圳大学医学部
    3.Department of School of Dalian Medical University Graduate School, Dalian 116044, China
  • 收稿日期:2024-07-12 出版日期:2024-12-01
  • 通信作者: 朱伟民
  • 基金资助:
    广东省基础与应用基础研究基金(2023A1515010371)深圳市科技计划资助(JCYJ20210324102607021)深圳市科技计划资助(GJHZ20220913143201002)深圳市第二人民2023级院级临床研究项目(2023yhlcyj030)深圳大学医工交叉研究基金(2023YG007)

Research progress of chondrocyte derived exosomes in repairing cartilage injury

Xiaofang Huang1,2, Shuyu Liu3, Zirong Huang1, Yan Hu1, Jiamin Liang1,2, Weiming Zhu1,()   

  1. 1.Department of Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University), Shenzhen 518035,China
    2.Department of School of Medicine, Shenzhen University, Shenzhen 518061,China
    3.Department of School of Dalian Medical University Graduate School, Dalian 116044, China
  • Received:2024-07-12 Published:2024-12-01
  • Corresponding author: Weiming Zhu
引用本文:

黄晓芳, 刘澍雨, 黄子荣, 胡艳, 梁家敏, 朱伟民. 软骨细胞来源外泌体对于软骨损伤修复的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 751-758.

Xiaofang Huang, Shuyu Liu, Zirong Huang, Yan Hu, Jiamin Liang, Weiming Zhu. Research progress of chondrocyte derived exosomes in repairing cartilage injury[J/OL]. Chinese Journal of Joint Surgery(Electronic Edition), 2024, 18(06): 751-758.

关节软骨是人体负重的关键组织。由于其缺乏血管、神经、淋巴等组织,导致软骨的自我修复能力非常有限。软骨损伤后会导致一系列明显症状,并严重影响生活质量。目前临床常用的软骨修复方法因不能形成天然透明软骨而尚未取得满意的治疗效果,因此迫切需要探索新的治疗软骨损伤的方法。近年来,随着对外泌体不断深入的研究,发现其在软骨修复方面具有巨大的潜力。本文主要讨论来源于软骨细胞的外泌体在软骨损伤修复中的应用前景,以期望为进一步研究软骨细胞来源的外泌体修复软骨损伤提供理论支持。

Joint cartilage is a crucial tissue for bearing weight in the human body. Its lack of blood vessels, nerves, and lymphatic tissue significantly limits its ability to self-repair. Damage to cartilage can lead to a range of symptoms and potentially impact the quality of life. Current clinical methods for cartilage repair have not achieved satisfactory results due to their inability to form natural hyaline cartilage, highlighting the urgent need for exploring new treatment approaches. In recent years, the deepening research into exosomes has revealed their significant potential in cartilage repair. This article focused on the biological characteristics of exosomes and the promising application of exosomes derived from cartilage cells in repairing cartilage damage,aiming to provide theoretical support for further studies on the use of exosomes from cartilage cells for cartilage repair.

[1]
FosangAJ, Beier F. Emerging Frontiers in cartilage and chondrocyte biology[J]. Best Pract Res Clin Rheumatol, 2011, 25( 6 ): 751-766.
[2]
Krishnan Y, Grodzinsky AJ. Cartilage diseases[J]. Matrix Biol,2018, 71-72: 51-69.
[3]
Muthu S, Korpershoek JV, Novais EJ, et al. Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies[J]. Nat Rev Rheumatol, 2023, 19( 7 ): 403-416.
[4]
Hu Q, Ecker M. Overview of MMP-13 as a promising target for the treatment of osteoarthritis[J/OL]. Int J Mol Sci, 2021, 22( 4 ):1742. DOI: 10.3390/ijms22041742.
[5]
Mehana EE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: an updated review[J/OL]. Life Sci, 2019, 234: 116786. DOI: 10.1016/j.lfs.2019.116786.
[6]
Gurunathan S, Kang MH, Kim JH. A comprehensive review on factors influences biogenesis, functions, therapeutic and clinical implications of exosomes[J]. Int J Nanomedicine, 2021, 16: 1281-1312.
[7]
Boriachek K, Islam MN, Möller A, et al. Biological functions and current advances in isolation and detection strategies for exosome nanovesicles[J/OL]. Small, 2018, 14( 6 ). DOI: 10.1002/smll.201702153.
[8]
Di NV. Degenerative osteoarthritis a reversible chronic disease[J].RegenTher, 2020, 15: 149-160.
[9]
Toh WS, Lai RC, Hui JHP, et al. MSC exosome as a cell-free MSC therapy for cartilage regeneration: implications for osteoarthritis treatment[J]. Semin Cell Dev Biol, 2017, 67: 56-64.
[10]
Asghar S, Litherland GJ, Lockhart JC, et al. Exosomes in intercellular communication and implications for osteoarthritis[J].Rheumatology ( Oxford ), 2020, 59( 1 ): 57-68.
[11]
Carneiro DC, Araújo LT, Santos GC, et al. Clinical trials with mesenchymal stem cell therapies for osteoarthritis: challenges in the regeneration of articular cartilage[J/OL]. Int J Mol Sci, 2023, 24( 12 ): 9939. DOI: 10.3390/ijms24129939.
[12]
Richter DL, Schenck RC Jr, Wascher DC, et al. Knee articular cartilage repair and restoration techniques: a review of the literature[J]. Sports Health, 2016, 8( 2 ): 153-160.
[13]
朱瑜琪, 王金荣, 王智耀. 间充质干细胞促进关节软骨的修复与再生[J]. 中国组织工程研究, 2015,19( 50 ): 8195-8200.
[14]
文涛, 郑诗豪, 董纪元. 间充质干细胞治疗骨性关节炎的研究现状及问题[J]. 解放军医学院学报, 2017,38( 6 ): 559-561, 589.
[15]
王新伟, 赵英杰, 常艳, 等. 间充质干细胞治疗骨关节炎软骨损伤: 作用、应用与问题[J]. 中国组织工程研究, 2021, 25( 31 ):5053-5058.
[16]
Mobasheri A, Kalamegam G, Musumeci G, et al. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions[J]. Maturitas,2014, 78( 3 ): 188-198.
[17]
Xiang XN, Zhu SY, He HC, et al. Mesenchymal stromal cell-based therapy for cartilage regeneration in knee osteoarthritis[J/OL].Stem Cell ResTher, 2022, 13( 1 ): 14. DOI: 10.1186/s13287-021-02689-9.
[18]
Maheshwer B, Polce EM, Paul K, et al. Regenerative potential of mesenchymal stem cells for the treatment of knee osteoarthritis and chondral defects: asystematic review and meta-analysis[J].Arthroscopy, 2021, 37( 1 ): 362-378.
[19]
Yu H, Huang Y, Yang L. Research progress in the use of mesenchymal stem cells and their derived exosomes in the treatment of osteoarthritis[J/OL]. Ageing Res Rev, 2022, 80: 101684. DOI:10.1016/j.arr.2022.101684.
[20]
Zha K, Li X, Yang Z, et al. Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application[J/OL]. NPJ Regen Med, 2021, 6( 1 ): 14. DOI: 10.1038/s41536-021-00122-6.
[21]
Margiana R, Markov A, Zekiy AO, et al. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review[J/OL]. Stem Cell Res Ther, 2022, 13( 1 ): 366. DOI:10.1186/s13287-022-03054-0.
[22]
Tenchov R, Sasso JM, Wang X, et al. Exosomes—Nature's lipid nanoparticles, a rising star in drug delivery and diagnostics [J].ACS Nano, 2022, 16( 11 ): 17802-17846.
[23]
Mao G, Zhang Z, Hu S, et al. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A[J/OL]. Stem Cell Res Ther, 2018, 9( 1 ): 247. DOI:10.1186/s13287-018-1004-0.
[24]
Jia Z, Liu Q, Liang Y, et al. Repair of articular cartilage defects with intra-articular injection of autologous rabbit synovial fluid-derived mesenchymal stem cells[J/OL]. J Transl Med, 2018, 16( 1 ): 123.DOI: 10.1186/s12967-018-1485-8.
[25]
Lin Y, Lu Y, Li X. Biological characteristics of exosomes and genetically engineered exosomes for the targeted delivery of therapeutic agents[J]. J Drug Target, 2020, 28( 2 ): 129-141.
[26]
刘新新, 周恩友, 安智远, 等. 不同来源外泌体对骨骼发育及骨骼疾病的影响[J]. 畜牧兽医学报, 2024,55( 2 ): 419-426.
[27]
Domenis R, Zanutel R, Caponnetto F, et al. Characterization of the proinflammatory profile of synovial fluid-derived exosomes of patients with osteoarthritis[J/OL]. Mediators Inflamm, 2017, 2017:4814987. DOI: 10.1155/2017/4814987.
[28]
Zhang J, Rong Y, Luo C, et al. Bone marrow mesenchymal stem cell-derived exosomes prevent osteoarthritis by regulating synovial macrophage polarization[J]. Aging, 2020, 12( 24 ): 25138-25152.
[29]
Cao H, Chen M, Cui X, et al. Cell-free osteoarthritis treatment with sustained-release of chondrocyte-targeting exosomes from umbilical cord-derived mesenchymal stem cells to rejuvenate aging chondrocytes[J]. ACS Nano, 2023, 17( 14 ): 13358-13376.
[30]
Castañeda S, Roman-Blas JA, Largo R, et al. Subchondral bone as a key target for osteoarthritis treatment[J]. Biochem Pharmacol,2012, 83( 3 ): 315-323.
[31]
Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis[J/OL]. Cells, 2019, 8( 7 ): 727. DOI: 10.3390/cells8070727.
[32]
Sonbhadra S, Mehak, Pandey LM. Biogenesis, isolation, and detection of exosomes and their potential in therapeutics and diagnostics[J/OL]. Biosensors, 2023, 13( 8 ): 802. DOI: 10.3390/bios13080802.
[33]
Farooqi AA, Desai NN, Qureshi MZ, et al. Exosome biogenesis,bioactivities and functions as new delivery systems of natural compounds[J]. Biotechnol Adv, 2018, 36( 1 ): 328-334.
[34]
Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges[J]. Acta Pharm Sin B, 2016, 6( 4 ): 287-296.
[35]
Yang T, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio[J]. Pharm Res, 2015, 32( 6 ): 2003-2014.
[36]
Khatami SH, Karami N, Taheri-Anganeh M, et al. Exosomes:promising delivery tools for overcoming blood-brain barrier and glioblastoma therapy[J]. Mol Neurobiol, 2023, 60( 8 ): 4659-4678.
[37]
Moon B, Chang S. Exosome as a delivery vehicle for cancer therapy[J/OL]. Cells, 2022, 11( 3 ): 316. DOI: 10.3390/cells11030316.
[38]
Zeng H, Guo S, Ren X, et al. Current strategies for exosome cargo loading and targeting delivery[J/OL]. Cells, 2023, 12( 10 ): 1416.DOI: 10.3390/cells12101416.
[39]
陈长军, 赵鑫, 陈李毅乐, 等. 外泌体在骨代谢及骨、关节疾病诊治中的研究进展[J]. 重庆医科大学学报, 2021, 46( 5 ): 610-617.
[40]
Zhao Y, Xu J. Synovial fluid-derived exosomal lncRNA PCGEM1 as biomarker for the different stages of osteoarthritis[J]. IntOrthop,2018, 42( 12 ): 2865-2872.
[41]
Chinnappan R, Ramadan Q, Zourob M. An integrated lab-on-achip platform for pre-concentration and detection of colorectal cancer exosomes using anti-CD63 aptamer as a recognition element[J/OL]. Biosens Bioelectron, 2023, 220: 114856. DOI: 10.1016/j.bios.2022.114856.
[42]
Li Q, Wang Y, Ling L, et al. Rapid and specific detection nanoplatform of serum exosomes for prostate cancer diagnosis[J/OL]. Mikrochim Acta, 2021, 188( 8 ): 283. DOI: 10.1007/s00604-021-04934-7.
[43]
Liu Y, Zou R, Wang Z, et al. Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis[J]. Biochem J, 2018, 475( 22 ): 3629-3638.
[44]
He L, He T, Xing J, et al. Bone marrow mesenchymal stem cellderived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis[J/OL]. Stem Cell Res Ther, 2020, 11( 1 ): 276. DOI: 10.1186/s13287-020-01781-w.
[45]
Liu C, Li Y, Yang Z, et al. Kartogenin enhances the therapeutic effect of bone marrow mesenchymal stem cells derived exosomes in cartilage repair[J]. Nanomedicine ( Lond ), 2020, 15( 3 ): 273-288.
[46]
黄涛, 方红育, 周少怀, 等. 外泌体对大鼠骨关节炎软骨细胞凋亡的影响[J/CD]. 中华关节外科杂志( 电子版 ), 2021, 15( 4 ):423-431.
[47]
Foo JB, Looi QH, How CW, et al. Mesenchymal stem cell-derived exosomes and microRNAs in cartilage regeneration: biogenesis,efficacy, miRNA enrichment and delivery[J/OL]. Pharmaceuticals,2021, 14( 11 ): 1093. DOI: 10.3390/ph14111093.
[48]
孙硕, 张锡光, 岳乔宁, 等. 外泌体携载微小RNA治疗骨关节炎的研究[J]. 中国骨质疏松杂志, 2023, 29( 2 ): 248-251.
[49]
Ji Y, Xiong L, Zhang G, et al. Synovial fluid exosome-derived miR-182-5p alleviates osteoarthritis by downregulating TNFAIP8 and promoting autophagy through LC3 signaling[J/OL]. Int Immunopharmacol, 2023, 125( Pt A ): 111177. DOI: 10.1016/j.intimp.2023.111177.
[50]
Qiu M, Xie Y, Tan G, et al. Synovial mesenchymal stem cell-derived exosomal miR-485-3p relieves cartilage damage in osteoarthritis by targeting the NRP1-mediated PI3K/Akt pathway: exosomal miR-485-3p relieves cartilage damage[J/OL]. Heliyon, 2024, 10( 2 ):e24042. DOI: 10.1016/j.heliyon.2024.e24042.
[51]
Wu J, Kuang L, Chen C, et al. MiR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis[J]. Biomaterials, 2019, 206: 87-100.
[52]
Jiang Y, Tuan RS. Bioactivity of human adult stem cells and functional relevance of stem cell-derived extracellular matrix in chondrogenesis[J/OL]. Stem Cell Res Ther, 2023, 14( 1 ): 160.DOI: 10.1186/s13287-023-03392-7.
[53]
张其琛, 江立波, 李熙雷. 不同细胞来源外泌体在骨科退行性疾病中的研究进展[J]. 中国临床医学, 2020,27( 6 ): 1046-1051.
[54]
Yin B, Ni J, Witherel CE, et al. Harnessing tissue-derived extracellular vesicles for osteoarthritis theranostics[J]. Theranostics,2022, 12( 1 ): 207-231.
[55]
Jubeck B, Gohr C, Fahey M, et al. Promotion of articular cartilage matrix vesicle mineralization by type I collagen[J]. Arthritis Rheum, 2008, 58( 9 ): 2809-2817.
[56]
Rosenthal AK, Gohr CM, Ninomiya J, et al. Proteomic analysis of articular cartilage vesicles from normal and osteoarthritic cartilage[J]. Arthritis Rheum, 2011, 63( 2 ): 401-411.
[57]
Bottini M, Mebarek S, Anderson KL, et al. Matrix vesicles from chondrocytes and osteoblasts: their biogenesis, properties, functions and biomimetic models[J]. Biochim Biophys Acta Gen Subj, 2018,1862( 3 ): 532-546.
[58]
Li S, Niu D, Fang H, et al. Tissue adhesive, ROS scavenging and injectable PRP-based ‘plasticine' for promoting cartilage repair[J/OL]. Regen Biomater, 2024, 11: rbad104. DOI: 10.1093/rb/rbad104.
[59]
Zheng L, Wang Y, Qiu P, et al. Primary chondrocyte exosomes mediate osteoarthritis progression by regulating mitochondrion and immune reactivity[J]. Nanomedicine ( Lond ), 2019, 14( 24 ):3193-3212.
[60]
Rikkers M, Korpershoek JV, Levato R, et al. Progenitor cells in healthy and osteoarthritic human cartilage have extensive culture expansion capacity while retaining chondrogenic properties[J].Cartilage, 2021, 13( 2_suppl ): 129S-142S.
[61]
Chen Y, Xue K, Zhang X, et al. Exosomes derived from mature chondrocytes facilitate subcutaneous stable ectopic chondrogenesis of cartilage progenitor cells[J/OL]. Stem Cell Res Ther, 2018, 9( 1 ):318. DOI: 10.1186/s13287-018-1047-2.
[62]
Chen J, Ni X, Yang J, et al. Cartilage stem/progenitor cells-derived exosomes facilitate knee cartilage repair in a subacute osteoarthritis rat model[J/OL]. J Cell Mol Med, 2024, 28( 8 ): e18327. DOI:10.1111/jcmm.18327.
[63]
Mao G, Hu S, Zhang Z, et al. Exosomal miR-95-5p regulates chondrogenesis and cartilage degradation via histone deacetylase 2/8[J]. J Cell Mol Med, 2018, 22( 11 ): 5354-5366.
[64]
Li Z, Wang Y, Xiang S, et al. Chondrocytes-derived exosomal miR-8485 regulated the Wnt/β-catenin pathways to promote chondrogenic differentiation of BMSCs[J]. Biochem Biophys Res Commun, 2020, 523( 2 ): 506-513.
[65]
Ni Z, Kuang L, Chen H, et al. The exosome-like vesicles from osteoarthritic chondrocyte enhanced mature IL-1β production of macrophages and aggravated synovitis in osteoarthritis[J/OL]. Cell Death Dis, 2019, 10( 7 ): 522. DOI: 10.1038/s41419-019-1739-2.
[66]
Lv G, Wang B, Li L, et al. Exosomes from dysfunctional chondrocytes affect osteoarthritis in Sprague-Dawley rats through FTO-dependent regulation of PIK3R5 mRNA stability[J]. Bone Joint Res, 2022, 11( 9 ): 652-668.
[67]
Daly AC, Freeman FE, Gonzalez-Fernandez T, et al. 3D bioprinting for cartilage and osteochondral tissue engineering[J/OL]. Adv Health Mater, 2017, 6( 22 ). DOI: 10.1002/adhm.201700298.
[68]
O'Shea DG, Hodgkinson T, Curtin CM, et al. An injectable and 3D printable pro-chondrogenic hyaluronic acid and collagen type II composite hydrogel for the repair of articular cartilage defects[J/OL]. Biofabrication, 2023, 16( 1 ). DOI: 10.1088/1758-5090/ad047a.
[69]
Xavier J, Jerome W, Zaslav K, et al. Exosome-laden scaffolds for treatment of post-traumatic cartilage injury and osteoarthritis of the knee: asystematic review[J/OL]. Int J Mol Sci, 2023, 24( 20 ):15178. DOI: 10.3390/ijms242015178.
[70]
Zhang FX, Liu P, Ding W, et al. Injectable mussel-inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration[J/OL]. Biomaterials, 2021, 278:121169. DOI: 10.1016/j.biomaterials.2021.121169.
[71]
Sun T, Feng Z, He W, et al. Novel 3D-printing bilayer GelMA-based hydrogel containing BP, β-TCP and exosomes for cartilage-bone integrated repair[J/OL]. Biofabrication, 2024, 16( 1 ): 15008 DOI:10.1088/1758-5090/ad04fe.
[72]
Vega SL, Kwon MY, Burdick JA. Recent advances in hydrogels for cartilage tissue engineering[J]. Eur Cell Mater, 2017, 33: 59-75.
[73]
Sang X, Zhao X, Yan L, et al. Thermosensitive hydrogel loaded with primary chondrocyte-derived exosomes promotes cartilage repair by regulating macrophage polarization in osteoarthritis[J]. Tissue Eng Regen Med, 2022, 19( 3 ): 629-642.
[74]
Nikhil A, Kumar A. Evaluating potential of tissue-engineered cryogels and chondrocyte derived exosomes in articular cartilage repair[J]. Biotechnol Bioeng, 2022, 119( 2 ): 605-625.
[75]
Behan K, Dufour A, Garcia O, et al. Methacrylated cartilage ECMbased hydrogels as injectables and bioinks for cartilage tissue engineering[J/OL]. Biomolecules, 2022, 12( 2 ): 216. DOI:10.3390/biom12020216.
[76]
Yoon KH, Yoo JD, Choi CH, et al. Costal chondrocyte-derived pellet-type autologous chondrocyte implantation versus microfracture for repair of articular cartilage defects: aprospective randomized trial[J]. Cartilage, 2021, 13( 1_suppl ): 1092S-1104S.
[77]
Wu Y, Li J, Zeng Y, et al. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies[J/OL]. Int J Oral Sci, 2022, 14( 1 ): 40.DOI: 10.1038/s41368-022-00187-z.
[78]
Cong B, Sun T, Zhao Y, et al. Current and novel therapeutics for articular cartilage repair and regeneration[J]. Ther Clin Risk Manag, 2023, 19: 485-502.
[79]
Thomas BL, Eldridge SE, Nosrati B, et al. WNT3A-loaded exosomes enable cartilage repair[J/OL]. J Extracell Vesicles, 2021, 10( 7 ):e12088. DOI: 10.1002/jev2.12088.
[80]
Li P, Wei X, Guan Y, et al. MicroRNA-1 regulates chondrocyte phenotype by repressing histone deacetylase 4 during growth plate development[J]. FASEBJ, 2014, 28( 9 ): 3930-3941.
[81]
Zhao S, Xiu G, Wang J, et al. Engineering exosomes derived from subcutaneous fat MSCs specially promote cartilage repair as miR-199a-3p delivery vehicles in osteoarthritis[J/OL]. J Nanobiotechnology, 2023, 21( 1 ): 341. DOI: 10.1186/s12951-023-02086-9.
[82]
Khayambashi P, Iyer J, Pillai S, et al. Hydrogel encapsulation of mesenchymal stem cells and their derived exosomes for tissue engineering[J/OL]. Int J Mol Sci, 2021, 22( 2 ): 684. DOI:10.3390/ijms22020684.
[83]
Liang Y, Duan L, Lu J, et al. Engineering exosomes for targeted drug delivery[J]. Theranostics, 2021, 11( 7 ): 3183-3195.
[84]
Lu Y, Mai Z, Cui L, et al. Engineering exosomes and biomaterialassisted exosomes as therapeutic carriers for bone regeneration[J/OL]. Stem Cell ResTher, 2023, 14( 1 ): 55. DOI: 10.1186/s13287-023-03275-x.
[85]
Lv LL, Cao YH, Ni HF, et al. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis[J]. Am J Physiol Renal Physiol, 2013, 305( 8 ): F1220-F1227.
[86]
Kolhe R, Hunter M, Liu S, et al. Gender-specific differential expression of exosomal miRNA in synovial fluid of patients with osteoarthritis[J/OL]. Sci Rep, 2017, 7( 1 ): 2029. DOI: 10.1038/s41598-017-01905-y.
[87]
Işın M, Uysaler E, Özgür E, et al. Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease[J/OL].Front Genet, 2015, 6: 168. DOI: 10.3389/fgene. 2015. 00168.
[88]
Xie F, Liu YL, Chen XY, et al. Role of microRNA, LncRNA, and exosomes in the progression of osteoarthritis: a review of recent literature[J]. Orthop Surg, 2020, 12( 3 ): 708-716.
[89]
Kimiz-Gebologlu I, Oncel SS. Exosomes: Large-scale production,isolation, drug loading efficiency, and biodistribution and uptake[J].J Control Release, 2022, 347: 533-543.
[90]
Ludwig N, Whiteside TL, Reichert TE. Challenges in exosome isolation and analysis in health and disease[J/OL]. Int J Mol Sci,2019, 20( 19 ): 4684. DOI: 10.3390/ijms20194684.
[1] 孙银松, 王德华, 周鹭, 雷一霆, 魏嘉莹, 贺尧, 董明非, 赵辰, 黄伟, 厉轲. 机器人辅助功能对线与手工机械对线全膝置换的早期疗效[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 709-719.
[2] 谢云港, 范长海, 刘荣顺, 邓瑞晨. 不同术式治疗内侧间室膝骨关节炎的疗效[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 720-728.
[3] 覃辉, 钟珊, 白凡, 李陈良, 罗伦. 关节镜术后冲击波干预对膝关节炎患者的影响[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 729-735.
[4] 刘鹏, 罗天, 许珂媛, 邓红美, 李瑄, 唐翠萍. 八段锦对膝关节炎疗效的初步步态分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 590-595.
[5] 苏介茂, 齐岩松, 王永祥, 魏宝刚, 马秉贤, 张鹏飞, 魏兴华, 徐永胜. 关节镜手术在早中期膝骨关节炎治疗的应用进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 646-652.
[6] 谢佳乐, 李琦, 芦升升, 姜劲松. 内侧膝骨关节炎伴胫股关节冠状半脱位的手术治疗[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 653-657.
[7] 许银峰, 盛璞义, 余世明, 张阳春. 偏心性髋臼旋转截骨术治疗发育性髋关节发育不良[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 568-574.
[8] 庄若语, 杭明辉, 李文华, 张霆, 侯炜. 膝骨关节炎半定量磁共振评分研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 545-552.
[9] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[10] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[11] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[12] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[13] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[14] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[15] 高广涵, 张耀南, 石磊, 王林, 王飞, 郑子天, 王鸿禹, 郭民政, 薛庆云. 膝骨关节炎患者前交叉韧带功能影像学影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 301-307.
阅读次数
全文


摘要