[1] |
Duan WJ, He RR. Cuproptosis: copper-induced regulated cell death[J]. Sci China Life Sci, 2022, 65( 8 ): 1680-1682.
|
[2] |
Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375( 6586 ): 1254-1261.
|
[3] |
Tsang T, Davis CI, Brady DC. Copper biology[J]. CurrBiol, 2021,31( 9 ): R421-R427.
|
[4] |
Cobine PA, Brady DC. Cuproptosis: Cellular and molecular mechanisms underlying copper-induced cell death[J]. Mol Cell,2022, 82( 10 ): 1786-1787.
|
[5] |
Yu Q, Xiao Y, Guan M, et al. Copper metabolism in osteoarthritis and its relation to oxidative stress and ferroptosis in chondrocytes[J/OL]. Front Mol Biosci, 2024, 11: 1472492. DOI:10.3389/fmolb.2024.1472492.
|
[6] |
Yang WM, Lv JF, Wang YY, et al. The daily intake levels of copper,selenium, and zinc are associated with osteoarthritis but not with rheumatoid arthritis in a cross-sectional study[J]. Biol Trace Elem Res, 2023, 201( 12 ): 5662-5670.
|
[7] |
Tsvetkov P, Detappe A, Cai K, et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress[J]. Nat Chem Biol, 2019,15( 7 ): 681-689.
|
[8] |
Corsello SM, Nagari RT, Spangler RD, et al. Discovering the anticancer potential of non-oncology drugs by systematic viability profiling[J]. Nat Cancer, 2020, 1( 2 ): 235-248.
|
[9] |
Hunsaker EW, Franz KJ. Emerging opportunities to manipulate metal trafficking for therapeutic benefit[J]. Inorg Chem, 2019, 58( 20 ): 13528-13545.
|
[10] |
Oliveri V. Biomedical applications of copper ionophores[J/OL]. Coord Chem Rev, 2020, 422: 213474. DOI:10.1016/j.ccr.2020.213474.
|
[11] |
Wang Y, Zhang L, Zhou F. Cuproptosis: a new form of programmed cell death[J]. Cell Mol Immunol, 2022, 19( 8 ): 867-868.
|
[12] |
Wallace DC. A mitochondrial bioenergetic etiology of disease[J]. J Clin Invest, 2013, 123( 4 ): 1405-1412.
|
[13] |
Blanco FJ, Valdes AM, Rego-Pérez I. Mitochondrial DNA variation and the pathogenesis of osteoarthritis phenotypes[J]. Nat Rev Rheumatol, 2018, 14( 6 ): 327-340.
|
[14] |
López-Armada MJ, Caramés B, Martín MA, et al. Mitochondrial activity is modulated by TNFα and IL-1β in normal human chondrocyte cells[J]. Osteoarthr Cartil, 2006, 14( 10 ): 1011-1022.
|
[15] |
Zhu X, Boulet A, Buckley KM, et al. Mitochondrial copper and phosphate transporter specificity was defined early in the evolution of eukaryotes[J/OL]. eLife, 2021, 10: e64690. DOI:10.7554/eLife.64690.
|
[16] |
Prohaska JR. Role of copper transporters in copper homeostasis[J].Am J Clin Nutr, 2008, 88( 3 ): 826S-829S.
|
[17] |
胡浩然, 谢雪涛, 张长青. 骨关节炎中软骨细胞自噬的研究进展[J/CD]. 中华关节外科杂志( 电子版 ), 2018,12( 6 ): 826-829.
|
[18] |
Xue Q, Kang R, Klionsky DJ, et al. Copper metabolism in cell death and autophagy[J]. Autophagy, 2023, 19( 8 ): 2175-2195.
|
[19] |
Liu S, Pan Y, Li T, et al. The role of regulated programmed cell death in osteoarthritis: from pathogenesis to therapy[J/OL]. Int J Mol Sci, 2023, 24( 6 ): 5364. DOI:10.3390/ijms24065364.
|
[20] |
Zhu Y, Wu G, Yan W, et al. miR-146b-5p regulates cell growth,invasion, and metabolism by targeting PDHB in colorectal cancer[J]. Am J Cancer Res, 2017, 7( 5 ): 1136-1150.
|
[21] |
Saunier E, Benelli C, Bortoli S. The pyruvate dehydrogenase complex in cancer: an old metabolic gatekeeper regulated by new pathways and pharmacological agents[J]. Int J Cancer, 2016, 138( 4 ): 809-817.
|
[22] |
Smolle M, Lindsay JG. Molecular architecture of the pyruvate dehydrogenase complex: bridging the gap[J]. Biochem Soc Trans,2006, 34( Pt 5 ): 815-818.
|
[23] |
Park S, Baek IJ, Ryu JH, et al. PPARα-ACOT12 axis is responsible for maintaining cartilage homeostasis through modulating de novo lipogenesis[J/OL]. Nat Commun, 2022, 13( 1 ): 3. DOI:10.1038/s41467-021-27738-y.
|
[24] |
王伟伟, 欧志学, 周毅, 等. 铜死亡基因在骨关节炎免疫浸润中的生物信息学分析[J]. 中国组织工程研究, 2023, 27( 11 ):1669-1676.
|
[25] |
Guo W, Wei B, Sun J, et al. Suppressive oligodeoxynucleotideinduced dendritic cells rein the aggravation of osteoarthritis in mice[J]. Immunopharm Immunot, 2018, 40( 5 ): 430-436.
|
[26] |
Wang Z, Wang B, Zhang J, et al. Chemokine ( C-C motif ) ligand 2/chemokine receptor 2 ( CCR2 ) axis blockade to delay chondrocyte hypertrophy as a therapeutic strategy for osteoarthritis[J/OL]. Med SciMonit, 2021, 27: e930053. DOI:10.12659/MSM.930053.
|
[27] |
Mayr JA, Feichtinger RG, Tort F, et al. Lipoic acid biosynthesis defects[J]. J Inherit Metab Dis, 2014, 37( 4 ): 553-563.
|
[28] |
Frommer KW, Hasseli R, Schäffler A, et al. Free fatty acids in bone pathophysiology of rheumatic diseases[J/OL]. Front Immunol,2019, 10: 2757. DOI:10.3389/fimmu.2019.02757.
|
[29] |
Chen B, Hong H, Sun Y, et al. Role of macrophage polarization in osteoarthritis ( review )[J/OL]. Exp Ther Med, 2022, 24( 6 ): 757.DOI:10.3892/etm.2022.11693.
|
[30] |
Xu M, Ji Y. Immunoregulation of synovial macrophages for the treatment of osteoarthritis[J/OL]. Open Life Sci, 2023, 18( 1 ):20220567. DOI:10.1515/biol-2022-0567.
|
[31] |
Li S, Zhang L, Liu C, et al. Spontaneous immunomodulation and regulation of angiogenesis and osteogenesis by Sr/Cu-borosilicate glass ( BSG ) bone cement to repair critical bone defects[J]. Bioact Mater, 2023, 23: 101-117.
|
[32] |
Cen D, Brayton D, Shahandeh B, et al. Disulfiram facilitates intracellular Cu uptake and induces apoptosis in human melanoma cells[J]. J Med Chem, 2004, 47( 27 ): 6914-6920.
|
[33] |
Nagai M, Vo NH, Shin Ogawa L, et al. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells[J]. Free Radic Biol Med, 2012, 52( 10 ):2142-2150.
|
[34] |
Springer C, Humayun D, Skouta R. Cuproptosis: unraveling the mechanisms of copper-induced cell death and its implication in cancer therapy[J]. Cancers, 2024, 16( 3 ): 647 DOI:10.3390/cancers16030647.
|
[35] |
Ruiz LM, Libedinsky A, Elorza AA. Role of copper on mitochondrial function and metabolism[J/OL]. Front Mol Biosci, 2021, 8:711227. DOI:10.3389/fmolb.2021.711227.
|
[36] |
Gohil VM. Repurposing elesclomol, an investigational drug for the treatment of copper metabolism disorders[J]. Expert Opin Investig Drugs, 2021, 30( 1 ): 1-4.
|
[37] |
Dreishpoon MB, Bick NR, Petrova B, et al. FDX1 regulates cellular protein lipoylation through direct binding to LIAS[J/OL]. bioRxiv,2023: 2023.02.03.526472. DOI:10.1101/2023.02.03.526472.
|
[38] |
Li SR, Bu LL, Cai L. Cuproptosis: lipoylated TCA cycle proteinsmediated novel cell death pathway[J/OL]. Signal Transduct Target Ther, 2022, 7( 1 ): 158. DOI:10.1038/s41392-022-01014-x.
|
[39] |
Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of mitochondrial cell death[J]. Cell Res, 2022, 32( 5 ):417-418.
|
[40] |
Yang S, Li Y, Zhou L, et al. Copper homeostasis and cuproptosis in atherosclerosis: metabolism, mechanisms and potential therapeutic strategies[J/OL]. Cell Death Discov, 2024, 10( 1 ): 25.DOI:10.1038/s41420-023-01796-1.
|
[41] |
Solmonson A, DeBerardinis RJ. Lipoic acid metabolism and mitochondrial redox regulation[J]. J Biol Chem, 2018, 293( 20 ):7522-7530.
|
[42] |
Rowland EA, Snowden CK, Cristea IM. Protein lipoylation:an evolutionarily conserved metabolic regulator of health and disease[J]. Curr Opin Chem Biol, 2018, 42: 76-85.
|
[43] |
Tang Q, Guo Y, Meng L, et al. Chemical tagging of protein lipoylation[J]. Angew Chem Int Ed, 2021, 60( 8 ): 4028-4033.
|
[44] |
Gao L, Zhang A. Copper-instigated modulatory cell mortality mechanisms and progress in oncological treatment investigations[J/OL]. Front Immunol, 2023, 14: 1236063. DOI:10.3389/fimmu.2023.1236063.
|
[45] |
de Goede P, Wefers J, Brombacher EC, et al. Circadian rhythms in mitochondrial respiration[J]. J Mol Endocrinol, 2018, 60( 3 ):R115-R130.
|
[46] |
Stockwell BR. Ferroptosis turns 10: Emerging mechanisms,physiological functions, and therapeutic applications[J]. Cell, 2022,185( 14 ): 2401-2421.
|
[47] |
Guan M, Yu Q, Zhou G, et al. Mechanisms of chondrocyte cell death in osteoarthritis: implications for disease progression and treatment[J/OL]. J Orthop Surg Res, 2024, 19( 1 ): 550.DOI:10.1186/s13018-024-05055-6.
|
[48] |
Zhu C, Han S, Zeng X, et al. Multifunctional thermo-sensitive hydrogel for modulating the microenvironment in Osteoarthritis by polarizing macrophages and scavenging RONS[J/OL]. J Nanobiotechnol, 2022, 20( 1 ): 221. DOI:10.1186/s12951-022-01422-9.
|
[49] |
Qi H, Shi H, Yan M, et al. Ammonium tetrathiomolybdate relieves oxidative stress in cisplatin-induced acute kidney injury via NRF2 signaling pathway[J/OL]. Cell Death Discov, 2023, 9( 1 ): 259.DOI:10.1038/s41420-023-01564-1.
|
[50] |
Sang Y, Zhang J, Liu C, et al. Ameliorating osteoarthritis in mice using silver nanoparticles[J/OL]. J Vis Exp, 2023( 196 ): ( 196 ).DOI:10.3791/65111.
|
[51] |
Rellmann Y, Eidhof E, Dreier R. Review: ER stress-induced cell death in osteoarthritic cartilage[J/OL]. Cell Signal, 2021, 78:109880. DOI:10.1016/j.cellsig.2020.109880.
|
[52] |
颜春鲁, 安方玉, 汪永锋, 等. 右归丸对大鼠膝骨关节炎的干预作用及其机制[J]. 中国应用生理学杂志, 2020,36( 5 ): 511-516.
|
[53] |
杨永菊, 任艳玲, 郑曲, 等. 右归丸治疗膝骨性关节炎作用机制的研究进展[J]. 中华中医药学刊, 2022,40( 7 ): 59-62.
|