[1] |
FosangAJ, Beier F. Emerging Frontiers in cartilage and chondrocyte biology[J]. Best Pract Res Clin Rheumatol, 2011, 25( 6 ): 751-766.
|
[2] |
Krishnan Y, Grodzinsky AJ. Cartilage diseases[J]. Matrix Biol,2018, 71-72: 51-69.
|
[3] |
Muthu S, Korpershoek JV, Novais EJ, et al. Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies[J]. Nat Rev Rheumatol, 2023, 19( 7 ): 403-416.
|
[4] |
Hu Q, Ecker M. Overview of MMP-13 as a promising target for the treatment of osteoarthritis[J/OL]. Int J Mol Sci, 2021, 22( 4 ):1742. DOI: 10.3390/ijms22041742.
|
[5] |
Mehana EE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: an updated review[J/OL]. Life Sci, 2019, 234: 116786. DOI: 10.1016/j.lfs.2019.116786.
|
[6] |
Gurunathan S, Kang MH, Kim JH. A comprehensive review on factors influences biogenesis, functions, therapeutic and clinical implications of exosomes[J]. Int J Nanomedicine, 2021, 16: 1281-1312.
|
[7] |
Boriachek K, Islam MN, Möller A, et al. Biological functions and current advances in isolation and detection strategies for exosome nanovesicles[J/OL]. Small, 2018, 14( 6 ). DOI: 10.1002/smll.201702153.
|
[8] |
Di NV. Degenerative osteoarthritis a reversible chronic disease[J].RegenTher, 2020, 15: 149-160.
|
[9] |
Toh WS, Lai RC, Hui JHP, et al. MSC exosome as a cell-free MSC therapy for cartilage regeneration: implications for osteoarthritis treatment[J]. Semin Cell Dev Biol, 2017, 67: 56-64.
|
[10] |
Asghar S, Litherland GJ, Lockhart JC, et al. Exosomes in intercellular communication and implications for osteoarthritis[J].Rheumatology ( Oxford ), 2020, 59( 1 ): 57-68.
|
[11] |
Carneiro DC, Araújo LT, Santos GC, et al. Clinical trials with mesenchymal stem cell therapies for osteoarthritis: challenges in the regeneration of articular cartilage[J/OL]. Int J Mol Sci, 2023, 24( 12 ): 9939. DOI: 10.3390/ijms24129939.
|
[12] |
Richter DL, Schenck RC Jr, Wascher DC, et al. Knee articular cartilage repair and restoration techniques: a review of the literature[J]. Sports Health, 2016, 8( 2 ): 153-160.
|
[13] |
朱瑜琪, 王金荣, 王智耀. 间充质干细胞促进关节软骨的修复与再生[J]. 中国组织工程研究, 2015,19( 50 ): 8195-8200.
|
[14] |
文涛, 郑诗豪, 董纪元. 间充质干细胞治疗骨性关节炎的研究现状及问题[J]. 解放军医学院学报, 2017,38( 6 ): 559-561, 589.
|
[15] |
王新伟, 赵英杰, 常艳, 等. 间充质干细胞治疗骨关节炎软骨损伤: 作用、应用与问题[J]. 中国组织工程研究, 2021, 25( 31 ):5053-5058.
|
[16] |
Mobasheri A, Kalamegam G, Musumeci G, et al. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions[J]. Maturitas,2014, 78( 3 ): 188-198.
|
[17] |
Xiang XN, Zhu SY, He HC, et al. Mesenchymal stromal cell-based therapy for cartilage regeneration in knee osteoarthritis[J/OL].Stem Cell ResTher, 2022, 13( 1 ): 14. DOI: 10.1186/s13287-021-02689-9.
|
[18] |
Maheshwer B, Polce EM, Paul K, et al. Regenerative potential of mesenchymal stem cells for the treatment of knee osteoarthritis and chondral defects: asystematic review and meta-analysis[J].Arthroscopy, 2021, 37( 1 ): 362-378.
|
[19] |
Yu H, Huang Y, Yang L. Research progress in the use of mesenchymal stem cells and their derived exosomes in the treatment of osteoarthritis[J/OL]. Ageing Res Rev, 2022, 80: 101684. DOI:10.1016/j.arr.2022.101684.
|
[20] |
Zha K, Li X, Yang Z, et al. Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application[J/OL]. NPJ Regen Med, 2021, 6( 1 ): 14. DOI: 10.1038/s41536-021-00122-6.
|
[21] |
Margiana R, Markov A, Zekiy AO, et al. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review[J/OL]. Stem Cell Res Ther, 2022, 13( 1 ): 366. DOI:10.1186/s13287-022-03054-0.
|
[22] |
Tenchov R, Sasso JM, Wang X, et al. Exosomes—Nature's lipid nanoparticles, a rising star in drug delivery and diagnostics [J].ACS Nano, 2022, 16( 11 ): 17802-17846.
|
[23] |
Mao G, Zhang Z, Hu S, et al. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A[J/OL]. Stem Cell Res Ther, 2018, 9( 1 ): 247. DOI:10.1186/s13287-018-1004-0.
|
[24] |
Jia Z, Liu Q, Liang Y, et al. Repair of articular cartilage defects with intra-articular injection of autologous rabbit synovial fluid-derived mesenchymal stem cells[J/OL]. J Transl Med, 2018, 16( 1 ): 123.DOI: 10.1186/s12967-018-1485-8.
|
[25] |
Lin Y, Lu Y, Li X. Biological characteristics of exosomes and genetically engineered exosomes for the targeted delivery of therapeutic agents[J]. J Drug Target, 2020, 28( 2 ): 129-141.
|
[26] |
刘新新, 周恩友, 安智远, 等. 不同来源外泌体对骨骼发育及骨骼疾病的影响[J]. 畜牧兽医学报, 2024,55( 2 ): 419-426.
|
[27] |
Domenis R, Zanutel R, Caponnetto F, et al. Characterization of the proinflammatory profile of synovial fluid-derived exosomes of patients with osteoarthritis[J/OL]. Mediators Inflamm, 2017, 2017:4814987. DOI: 10.1155/2017/4814987.
|
[28] |
Zhang J, Rong Y, Luo C, et al. Bone marrow mesenchymal stem cell-derived exosomes prevent osteoarthritis by regulating synovial macrophage polarization[J]. Aging, 2020, 12( 24 ): 25138-25152.
|
[29] |
Cao H, Chen M, Cui X, et al. Cell-free osteoarthritis treatment with sustained-release of chondrocyte-targeting exosomes from umbilical cord-derived mesenchymal stem cells to rejuvenate aging chondrocytes[J]. ACS Nano, 2023, 17( 14 ): 13358-13376.
|
[30] |
Castañeda S, Roman-Blas JA, Largo R, et al. Subchondral bone as a key target for osteoarthritis treatment[J]. Biochem Pharmacol,2012, 83( 3 ): 315-323.
|
[31] |
Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis[J/OL]. Cells, 2019, 8( 7 ): 727. DOI: 10.3390/cells8070727.
|
[32] |
Sonbhadra S, Mehak, Pandey LM. Biogenesis, isolation, and detection of exosomes and their potential in therapeutics and diagnostics[J/OL]. Biosensors, 2023, 13( 8 ): 802. DOI: 10.3390/bios13080802.
|
[33] |
Farooqi AA, Desai NN, Qureshi MZ, et al. Exosome biogenesis,bioactivities and functions as new delivery systems of natural compounds[J]. Biotechnol Adv, 2018, 36( 1 ): 328-334.
|
[34] |
Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges[J]. Acta Pharm Sin B, 2016, 6( 4 ): 287-296.
|
[35] |
Yang T, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio[J]. Pharm Res, 2015, 32( 6 ): 2003-2014.
|
[36] |
Khatami SH, Karami N, Taheri-Anganeh M, et al. Exosomes:promising delivery tools for overcoming blood-brain barrier and glioblastoma therapy[J]. Mol Neurobiol, 2023, 60( 8 ): 4659-4678.
|
[37] |
Moon B, Chang S. Exosome as a delivery vehicle for cancer therapy[J/OL]. Cells, 2022, 11( 3 ): 316. DOI: 10.3390/cells11030316.
|
[38] |
Zeng H, Guo S, Ren X, et al. Current strategies for exosome cargo loading and targeting delivery[J/OL]. Cells, 2023, 12( 10 ): 1416.DOI: 10.3390/cells12101416.
|
[39] |
陈长军, 赵鑫, 陈李毅乐, 等. 外泌体在骨代谢及骨、关节疾病诊治中的研究进展[J]. 重庆医科大学学报, 2021, 46( 5 ): 610-617.
|
[40] |
Zhao Y, Xu J. Synovial fluid-derived exosomal lncRNA PCGEM1 as biomarker for the different stages of osteoarthritis[J]. IntOrthop,2018, 42( 12 ): 2865-2872.
|
[41] |
Chinnappan R, Ramadan Q, Zourob M. An integrated lab-on-achip platform for pre-concentration and detection of colorectal cancer exosomes using anti-CD63 aptamer as a recognition element[J/OL]. Biosens Bioelectron, 2023, 220: 114856. DOI: 10.1016/j.bios.2022.114856.
|
[42] |
Li Q, Wang Y, Ling L, et al. Rapid and specific detection nanoplatform of serum exosomes for prostate cancer diagnosis[J/OL]. Mikrochim Acta, 2021, 188( 8 ): 283. DOI: 10.1007/s00604-021-04934-7.
|
[43] |
Liu Y, Zou R, Wang Z, et al. Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis[J]. Biochem J, 2018, 475( 22 ): 3629-3638.
|
[44] |
He L, He T, Xing J, et al. Bone marrow mesenchymal stem cellderived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis[J/OL]. Stem Cell Res Ther, 2020, 11( 1 ): 276. DOI: 10.1186/s13287-020-01781-w.
|
[45] |
Liu C, Li Y, Yang Z, et al. Kartogenin enhances the therapeutic effect of bone marrow mesenchymal stem cells derived exosomes in cartilage repair[J]. Nanomedicine ( Lond ), 2020, 15( 3 ): 273-288.
|
[46] |
黄涛, 方红育, 周少怀, 等. 外泌体对大鼠骨关节炎软骨细胞凋亡的影响[J/CD]. 中华关节外科杂志( 电子版 ), 2021, 15( 4 ):423-431.
|
[47] |
Foo JB, Looi QH, How CW, et al. Mesenchymal stem cell-derived exosomes and microRNAs in cartilage regeneration: biogenesis,efficacy, miRNA enrichment and delivery[J/OL]. Pharmaceuticals,2021, 14( 11 ): 1093. DOI: 10.3390/ph14111093.
|
[48] |
孙硕, 张锡光, 岳乔宁, 等. 外泌体携载微小RNA治疗骨关节炎的研究[J]. 中国骨质疏松杂志, 2023, 29( 2 ): 248-251.
|
[49] |
Ji Y, Xiong L, Zhang G, et al. Synovial fluid exosome-derived miR-182-5p alleviates osteoarthritis by downregulating TNFAIP8 and promoting autophagy through LC3 signaling[J/OL]. Int Immunopharmacol, 2023, 125( Pt A ): 111177. DOI: 10.1016/j.intimp.2023.111177.
|
[50] |
Qiu M, Xie Y, Tan G, et al. Synovial mesenchymal stem cell-derived exosomal miR-485-3p relieves cartilage damage in osteoarthritis by targeting the NRP1-mediated PI3K/Akt pathway: exosomal miR-485-3p relieves cartilage damage[J/OL]. Heliyon, 2024, 10( 2 ):e24042. DOI: 10.1016/j.heliyon.2024.e24042.
|
[51] |
Wu J, Kuang L, Chen C, et al. MiR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis[J]. Biomaterials, 2019, 206: 87-100.
|
[52] |
Jiang Y, Tuan RS. Bioactivity of human adult stem cells and functional relevance of stem cell-derived extracellular matrix in chondrogenesis[J/OL]. Stem Cell Res Ther, 2023, 14( 1 ): 160.DOI: 10.1186/s13287-023-03392-7.
|
[53] |
张其琛, 江立波, 李熙雷. 不同细胞来源外泌体在骨科退行性疾病中的研究进展[J]. 中国临床医学, 2020,27( 6 ): 1046-1051.
|
[54] |
Yin B, Ni J, Witherel CE, et al. Harnessing tissue-derived extracellular vesicles for osteoarthritis theranostics[J]. Theranostics,2022, 12( 1 ): 207-231.
|
[55] |
Jubeck B, Gohr C, Fahey M, et al. Promotion of articular cartilage matrix vesicle mineralization by type I collagen[J]. Arthritis Rheum, 2008, 58( 9 ): 2809-2817.
|
[56] |
Rosenthal AK, Gohr CM, Ninomiya J, et al. Proteomic analysis of articular cartilage vesicles from normal and osteoarthritic cartilage[J]. Arthritis Rheum, 2011, 63( 2 ): 401-411.
|
[57] |
Bottini M, Mebarek S, Anderson KL, et al. Matrix vesicles from chondrocytes and osteoblasts: their biogenesis, properties, functions and biomimetic models[J]. Biochim Biophys Acta Gen Subj, 2018,1862( 3 ): 532-546.
|
[58] |
Li S, Niu D, Fang H, et al. Tissue adhesive, ROS scavenging and injectable PRP-based ‘plasticine' for promoting cartilage repair[J/OL]. Regen Biomater, 2024, 11: rbad104. DOI: 10.1093/rb/rbad104.
|
[59] |
Zheng L, Wang Y, Qiu P, et al. Primary chondrocyte exosomes mediate osteoarthritis progression by regulating mitochondrion and immune reactivity[J]. Nanomedicine ( Lond ), 2019, 14( 24 ):3193-3212.
|
[60] |
Rikkers M, Korpershoek JV, Levato R, et al. Progenitor cells in healthy and osteoarthritic human cartilage have extensive culture expansion capacity while retaining chondrogenic properties[J].Cartilage, 2021, 13( 2_suppl ): 129S-142S.
|
[61] |
Chen Y, Xue K, Zhang X, et al. Exosomes derived from mature chondrocytes facilitate subcutaneous stable ectopic chondrogenesis of cartilage progenitor cells[J/OL]. Stem Cell Res Ther, 2018, 9( 1 ):318. DOI: 10.1186/s13287-018-1047-2.
|
[62] |
Chen J, Ni X, Yang J, et al. Cartilage stem/progenitor cells-derived exosomes facilitate knee cartilage repair in a subacute osteoarthritis rat model[J/OL]. J Cell Mol Med, 2024, 28( 8 ): e18327. DOI:10.1111/jcmm.18327.
|
[63] |
Mao G, Hu S, Zhang Z, et al. Exosomal miR-95-5p regulates chondrogenesis and cartilage degradation via histone deacetylase 2/8[J]. J Cell Mol Med, 2018, 22( 11 ): 5354-5366.
|
[64] |
Li Z, Wang Y, Xiang S, et al. Chondrocytes-derived exosomal miR-8485 regulated the Wnt/β-catenin pathways to promote chondrogenic differentiation of BMSCs[J]. Biochem Biophys Res Commun, 2020, 523( 2 ): 506-513.
|
[65] |
Ni Z, Kuang L, Chen H, et al. The exosome-like vesicles from osteoarthritic chondrocyte enhanced mature IL-1β production of macrophages and aggravated synovitis in osteoarthritis[J/OL]. Cell Death Dis, 2019, 10( 7 ): 522. DOI: 10.1038/s41419-019-1739-2.
|
[66] |
Lv G, Wang B, Li L, et al. Exosomes from dysfunctional chondrocytes affect osteoarthritis in Sprague-Dawley rats through FTO-dependent regulation of PIK3R5 mRNA stability[J]. Bone Joint Res, 2022, 11( 9 ): 652-668.
|
[67] |
Daly AC, Freeman FE, Gonzalez-Fernandez T, et al. 3D bioprinting for cartilage and osteochondral tissue engineering[J/OL]. Adv Health Mater, 2017, 6( 22 ). DOI: 10.1002/adhm.201700298.
|
[68] |
O'Shea DG, Hodgkinson T, Curtin CM, et al. An injectable and 3D printable pro-chondrogenic hyaluronic acid and collagen type II composite hydrogel for the repair of articular cartilage defects[J/OL]. Biofabrication, 2023, 16( 1 ). DOI: 10.1088/1758-5090/ad047a.
|
[69] |
Xavier J, Jerome W, Zaslav K, et al. Exosome-laden scaffolds for treatment of post-traumatic cartilage injury and osteoarthritis of the knee: asystematic review[J/OL]. Int J Mol Sci, 2023, 24( 20 ):15178. DOI: 10.3390/ijms242015178.
|
[70] |
Zhang FX, Liu P, Ding W, et al. Injectable mussel-inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration[J/OL]. Biomaterials, 2021, 278:121169. DOI: 10.1016/j.biomaterials.2021.121169.
|
[71] |
Sun T, Feng Z, He W, et al. Novel 3D-printing bilayer GelMA-based hydrogel containing BP, β-TCP and exosomes for cartilage-bone integrated repair[J/OL]. Biofabrication, 2024, 16( 1 ): 15008 DOI:10.1088/1758-5090/ad04fe.
|
[72] |
Vega SL, Kwon MY, Burdick JA. Recent advances in hydrogels for cartilage tissue engineering[J]. Eur Cell Mater, 2017, 33: 59-75.
|
[73] |
Sang X, Zhao X, Yan L, et al. Thermosensitive hydrogel loaded with primary chondrocyte-derived exosomes promotes cartilage repair by regulating macrophage polarization in osteoarthritis[J]. Tissue Eng Regen Med, 2022, 19( 3 ): 629-642.
|
[74] |
Nikhil A, Kumar A. Evaluating potential of tissue-engineered cryogels and chondrocyte derived exosomes in articular cartilage repair[J]. Biotechnol Bioeng, 2022, 119( 2 ): 605-625.
|
[75] |
Behan K, Dufour A, Garcia O, et al. Methacrylated cartilage ECMbased hydrogels as injectables and bioinks for cartilage tissue engineering[J/OL]. Biomolecules, 2022, 12( 2 ): 216. DOI:10.3390/biom12020216.
|
[76] |
Yoon KH, Yoo JD, Choi CH, et al. Costal chondrocyte-derived pellet-type autologous chondrocyte implantation versus microfracture for repair of articular cartilage defects: aprospective randomized trial[J]. Cartilage, 2021, 13( 1_suppl ): 1092S-1104S.
|
[77] |
Wu Y, Li J, Zeng Y, et al. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies[J/OL]. Int J Oral Sci, 2022, 14( 1 ): 40.DOI: 10.1038/s41368-022-00187-z.
|
[78] |
Cong B, Sun T, Zhao Y, et al. Current and novel therapeutics for articular cartilage repair and regeneration[J]. Ther Clin Risk Manag, 2023, 19: 485-502.
|
[79] |
Thomas BL, Eldridge SE, Nosrati B, et al. WNT3A-loaded exosomes enable cartilage repair[J/OL]. J Extracell Vesicles, 2021, 10( 7 ):e12088. DOI: 10.1002/jev2.12088.
|
[80] |
Li P, Wei X, Guan Y, et al. MicroRNA-1 regulates chondrocyte phenotype by repressing histone deacetylase 4 during growth plate development[J]. FASEBJ, 2014, 28( 9 ): 3930-3941.
|
[81] |
Zhao S, Xiu G, Wang J, et al. Engineering exosomes derived from subcutaneous fat MSCs specially promote cartilage repair as miR-199a-3p delivery vehicles in osteoarthritis[J/OL]. J Nanobiotechnology, 2023, 21( 1 ): 341. DOI: 10.1186/s12951-023-02086-9.
|
[82] |
Khayambashi P, Iyer J, Pillai S, et al. Hydrogel encapsulation of mesenchymal stem cells and their derived exosomes for tissue engineering[J/OL]. Int J Mol Sci, 2021, 22( 2 ): 684. DOI:10.3390/ijms22020684.
|
[83] |
Liang Y, Duan L, Lu J, et al. Engineering exosomes for targeted drug delivery[J]. Theranostics, 2021, 11( 7 ): 3183-3195.
|
[84] |
Lu Y, Mai Z, Cui L, et al. Engineering exosomes and biomaterialassisted exosomes as therapeutic carriers for bone regeneration[J/OL]. Stem Cell ResTher, 2023, 14( 1 ): 55. DOI: 10.1186/s13287-023-03275-x.
|
[85] |
Lv LL, Cao YH, Ni HF, et al. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis[J]. Am J Physiol Renal Physiol, 2013, 305( 8 ): F1220-F1227.
|
[86] |
Kolhe R, Hunter M, Liu S, et al. Gender-specific differential expression of exosomal miRNA in synovial fluid of patients with osteoarthritis[J/OL]. Sci Rep, 2017, 7( 1 ): 2029. DOI: 10.1038/s41598-017-01905-y.
|
[87] |
Işın M, Uysaler E, Özgür E, et al. Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease[J/OL].Front Genet, 2015, 6: 168. DOI: 10.3389/fgene. 2015. 00168.
|
[88] |
Xie F, Liu YL, Chen XY, et al. Role of microRNA, LncRNA, and exosomes in the progression of osteoarthritis: a review of recent literature[J]. Orthop Surg, 2020, 12( 3 ): 708-716.
|
[89] |
Kimiz-Gebologlu I, Oncel SS. Exosomes: Large-scale production,isolation, drug loading efficiency, and biodistribution and uptake[J].J Control Release, 2022, 347: 533-543.
|
[90] |
Ludwig N, Whiteside TL, Reichert TE. Challenges in exosome isolation and analysis in health and disease[J/OL]. Int J Mol Sci,2019, 20( 19 ): 4684. DOI: 10.3390/ijms20194684.
|