[1] |
Forlenza EM,Serino J 3rd,Terhune EB,et al. Cementless total knee arthroplasty is associated with early aseptic loosening in a large national database[J/OL]. J Arthroplasty,2023,38( 7 Suppl2 ):S215-S220. DOI: 10.1016/j.arth.2023.02.058.
|
[2] |
Shichman I,Askew N,Habibi A,et al. Projections and epidemiology of revision hip and knee arthroplasty in the United States to 2040-2060[J/OL]. Arthroplast Today,2023,21: 101152.DOI: 10.1016/j.artd.2023.101152.
|
[3] |
Toita R,Kang JH,Tsuchiya A. Phosphatidylserine liposome multilayers mediate the M1-to-M2 macrophage polarization to enhance bone tissue regeneration[J]. Acta Biomater,2022,154:583-596.
|
[4] |
Bronte V,MurrayPJ. Understanding local macrophage phenotypes in disease: modulating macrophage function to treat cancer[J].NatMed,2015,21( 2 ): 117-119.
|
[5] |
Ma Y,Yang H,Zong X,et al. Artificial M2 macrophages for disease-modifying osteoarthritis therapeutics[J/OL]. Biomaterials,2021,274: 120865.DOI: 10.1016/j.biomaterials.2021.120865.
|
[6] |
Gharavi AT,Hanjani NA,Movahed E,et al. The role of macrophage subtypes and exosomes in immunomodulation[J/OL]. Cell Mol Biol Lett,2022,27( 1 ): 83. DOI: 10.1186/s11658-022-00384-y.
|
[7] |
徐梦丽. 巨噬细胞分型对美西螈肢体再生的影响[D]. 西安: 西北大学,2022.
|
[8] |
Lin C,Xu C,Zhou Y,et al. Identification of biomarkers related to M2 macrophage infiltration in Alzheimer's disease[J/OL]. Cells,2022,11( 15 ): 2365. DOI: 10.3390/cells11152365.
|
[9] |
Pan B,Zhang Z,Wu X,et al. Macrophage-derived exosomes modulate wear particle-induced osteolysis via miR-3470b targeting TAB3/NF-κB signaling[J]. Bioact Mater,2023,26: 181-193.
|
[10] |
Lin X,Yuan G,Yang B,et al. Dauricine attenuates ovariectomizedinduced bone loss and RANKL-induced osteoclastogenesis via inhibiting ROS-mediated NF-κB and NFATc1 activity[J/OL].Phytomedicine,2024,129: 155559.DOI: 10.1016/j.phymed.2024.155559.
|
[11] |
Yang J,Tang R,Yi J,et al. Diallyl disulfide alleviates inflammatory osteolysis by suppressing osteoclastogenesis via NF-κB-NFATc1 signal pathway[J]. FASEB J,2019,33( 6 ): 7261-7273.
|
[12] |
Zhou S,Li J,Ying T,et al. Stem regenin 1 attenuates the RANKL-induced osteoclastogenesis via inhibiting AhR-c-src-NF-κB/p-ERK MAPK-NFATc1 signaling pathway[J/OL]. iScience,2024,27( 5 ):109682.DOI: 10.1016/j.isci.2024.109682.
|
[13] |
Yang D,Tan Y,Xie X,et al. Zingerone attenuates Ti particleinduced inflammatory osteolysis by suppressing the NF-κB signaling pathway in osteoclasts[J/OL]. Int Immunopharmacol,2023,115:109720.DOI: 10.1016/j.intimp.2023.109720.
|
[14] |
Duan J,Hu X,Li T,et al. Cimifugin suppresses NF-κB signaling to prevent osteoclastogenesis and periprosthetic osteolysis[J/OL]. Front Pharmacol,2021,12: 724256.DOI: 10.3389/fphar.2021.724256.
|
[15] |
刘鹏,邓亚鹏,曹国定,等. 人工关节置换术后假体无菌性松动的研究进展[J/CD]. 中华关节外科杂志( 电子版 ),2020,14( 3 ):346-351.
|
[16] |
谭飞,乔永杰,张浩强,等. 磨损颗粒影响破骨细胞经典信号通路研究进展[J/OL]. 中华关节外科杂志( 电子版 ),2024,18( 1 ):106-117.
|
[17] |
Li C,XuMM,Wang K,et al. Macrophage polarization and metainflammation[J]. Transl Res,2018,191: 29-44.
|
[18] |
Godoi MA,Camilli AC,Gonzales KGA,et al. JAK/STAT as a potential therapeutic target for osteolytic diseases[J/OL]. Int J Mol Sci,2023,24( 12 ): 10290. DOI: 10.3390/ijms241210290.
|
[19] |
Feng J,Huang Z,Lu J,et al. Loss of signal transducer and activator of transcription 3 in osteoblasts impaired the bone healing in inflammatory microenvironment[J]. Mol Oral Microbiol,2024,39( 3 ): 136-151.
|
[20] |
韦沅汛,陈锋,林宗汉,等. Notch信号通路与骨质疏松症及中医药防治[J]. 中国组织工程研究,2024,28( 4 ): 587-593.
|
[21] |
Padovano C,Bianco SD,Sansico F,et al. The Notch1 signaling pathway directly modulates the human RANKL-induced osteoclastogenesis[J/OL]. Sci Rep,2023,13( 1 ): 21199. DOI:10.1038/s41598-023-48615-2.
|
[22] |
Canalis E,Grossman TR,Carrer M,et al. Antisense oligonucleotides targeting Notch2 ameliorate the osteopenic phenotype in a mouse model of Hajdu-Cheney syndrome[J]. J Biol Chem,2020,295( 12 ):3952-3964.
|
[23] |
Motwani MP,Gilroy DW. Macrophage development and polarization in chronic inflammation[J]. Semin Immunol,2015,27( 4 ): 257-266.
|
[24] |
Gao J,Wu P,Chi Y,et al. LY450139 inhibited Ti-particle-induced bone dissolution via suppressing notch and NF-κB signaling pathways[J]. Calcif Tissue Int,2022,111( 2 ): 211-223.
|
[25] |
Panez-Toro I,Heymann D,Gouin F,et al. Roles of inflammatory cell infiltrate in periprosthetic osteolysis[J/OL]. Front Immunol,2023,14: 1310262.DOI: 10.3389/fimmu.2023.1310262.
|
[26] |
Canalis E,Schilling L,Yu J,et al. NOTCH2 promotes osteoclast maturation and metabolism and modulates the transcriptome profile during osteoclastogenesis[J/OL]. J Biol Chem,2024,300( 2 ):105613.DOI: 10.1016/j.jbc.2023.105613.
|
[27] |
Yao Y,Cai X,Ren F,et al. The macrophage-osteoclast axis in osteoimmunity and osteo-related diseases[J/OL]. Front Immunol,2021,12: 664871.DOI: 10.3389/fimmu.2021.664871.
|
[28] |
Wang X,Sun T,Mao X. mascRNA promotes macrophage apoptosis,inhibits osteoclast differentiation and attenuates disease progression in a murine model of arthritis[J]. Biochem Biophys Res Commun,2022,611: 151-157.
|
[29] |
GoodmanSB,Gibon E,Gallo J,et al. Macrophage polarization and the osteoimmunology of periprosthetic osteolysis[J]. Curr Osteoporos Rep,2022,20( 1 ): 43-52.
|
[30] |
Pajarinen J,Lin T,Nabeshima A,et al. Interleukin-4 repairs wear particle induced osteolysis by modulating macrophage polarization and bone turnover[J]. J Biomed Mater Res A,2021,109( 8 ):1512-1520.
|
[31] |
Wang F,Yang P,Wan T,et al. Osthole inhibits M1 macrophage polarization and attenuates osteolysis in a mouse skull model[J/OL].Oxid Med Cell Longev,2023,2023: 2975193.DOI: 10.1155/2023/2975193.
|
[32] |
Hu K,Shang Z,Yang X,et al. Macrophage polarization and the regulation of bone immunity in bone homeostasis[J]. J Inflamm Res,2023,16: 3563-3580.
|
[33] |
Jiang J,Jia T,Gong W,et al. Macrophage polarization in IL-10 treatment of particle-induced inflammation and osteolysis[J]. Am J Pathol,2016,186( 1 ): 57-66.
|
[34] |
Cong Y,Wang Y,Yuan T,et al. Macrophages in aseptic loosening:characteristics,functions,and mechanisms[J/OL]. Front Immunol,2023,14: 1122057.DOI: 10.3389/fimmu.2023.1122057.
|
[35] |
Qiu J,Peng P,Xin M,et al. ZBTB20-mediated titanium particleinduced peri-implant osteolysis by promoting macrophage inflammatory responses[J]. Biomater Sci,2020,8( 11 ): 3147-3163.
|
[36] |
Gu M,Pan B,Chen W,et al. SPHK inhibitors and zoledronic acid suppress osteoclastogenesis and wear particle-induced osteolysis[J/OL].Front Pharmacol,2021,12: 794429.DOI: 10.3389/fphar.2021.794429.
|
[37] |
El Kasmi KC,Stenmark KR. Contribution of metabolic reprogramming to macrophage plasticity and function[J]. Semin Immunol,2015,27( 4 ): 267-275.
|
[38] |
Guo C,Islam R,Zhang S,et al. Metabolic reprogramming of macrophages and its involvement in inflammatory diseases[J].EXCLI J,2021,20: 628-641.
|
[39] |
Li X,Gao F,Zhu W,et al. Pristane promotes anaerobic glycolysis to facilitate proinflammatory activation of macrophages and development of arthritis[J/OL]. Exp Cell Res,2021,398( 1 ):112404.DOI: 10.1016/j.yexcr.2020.112404.
|
[40] |
Zhao W,Xu D,Hong W,et al. Grossamide attenuates inflammation by balancing macrophage polarization through metabolic reprogramming of macrophages in mice[J/OL]. Int Immunopharmacol,2022,112: 109190.DOI: 10.1016/j.intimp.2022.109190.
|
[41] |
吴红宁,林超龙,黄承浩. 巨噬细胞极化中糖代谢重编程的研究进展[J]. 中国病理生理杂志,2023,39( 9 ): 1650-1657.
|
[42] |
张聪. 基于巨噬细胞代谢重编程探讨D-甘露糖治疗大鼠类风湿性关节炎的疗效及机制[D]. 南昌: 南昌大学,2023.
|
[43] |
Yuan Y,Fan G,Liu Y,et al. The transcription factor KLF14 regulates macrophage glycolysis and immune function by inhibiting HK2 in sepsis[J]. Cell Mol Immunol,2022,19( 4 ): 504-515.
|
[44] |
Liu T,Wen Z,Shao L,et al. ATF4 knockdown in macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and HIF-1α ubiquitination in sepsis[J/OL]. Clin Immunol,2023,254: 109698.DOI: 10.1016/j.clim.2023.109698.
|
[45] |
Yu Q,Wang Y,Dong L,et al. Regulations of glycolytic activities on macrophages functions in tumor and infectious inflammation[J/OL].Front Cell Infect Microbiol,2020,10: 287. DOI: 10.3389/fcimb.2020.00287.
|
[46] |
Viola A,Munari F,Sánchez-Rodríguez R,et al. The metabolic signature of macrophage responses[J/OL]. Front Immunol,2019,10: 1462. DOI: 10.3389/fimmu.2019.01462.
|
[47] |
Kruglov V,Jang IH,Camell CD. Inflammaging and fatty acid oxidation in monocytes and macrophages[J/OL].Immunometabolism( Cobham ),2024,6( 1 ): e00038. DOI:10.1097/IN9.0000000000000038.
|
[48] |
Xu M,Wang X,Li Y,et al. Arachidonic acid metabolism controls macrophage alternative activation through regulating oxidative phosphorylation in PPARγ dependent manne[rJ/OL].FrontImmunol,2021,12: 618501.DOI: 10.3389/fimmu.2021.618501.
|
[49] |
Kubatzky KF,Uhle F,Eigenbrod T. From macrophage to osteoclast-How metabolism determines function and activity[J]. Cytokine,2018,112: 102-115.
|
[50] |
O'Neill LAJ,Artyomov MN. Itaconate: the poster child of metabolic reprogramming in macrophage function[J]. Nat Rev Immunol,2019,19( 5 ): 273-281.
|
[51] |
Lampropoulou V,Sergushichev A,Bambouskova M,et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation[J]. Cell Metab,2016,24( 1 ): 158-166.
|
[52] |
Hooftman A,Peace CG,Ryan DG,et al. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production[J].Nature,2023,615( 7952 ): 490-498.
|
[53] |
Liu S,Yang J,Wu Z. The regulatory role of α-ketoglutarate metabolism in macrophages[J/OL]. Mediators Inflamm,2021,2021: 5577577.DOI: 10.1155/2021/5577577.
|
[54] |
Liu PS,Wang H,Li X,et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming[J]. Nat Immunol,2017,18( 9 ): 985-994.
|
[55] |
陈娟,周永学,闫曙光,等. 糖代谢重编程与巨噬细胞表型的研究进展[J]. 中国免疫学杂志,2023,39( 10 ): 2098-2103.
|
[56] |
Deng Z,Zhang R,Li M,et al. STAT3/IL-6 dependent induction of inflammatory response in osteoblast and osteoclast formation in nanoscale wear particle-induced aseptic prosthesis loosening[J].Biomater Sci,2021,9( 4 ): 1291-1300.
|
[57] |
Li C,Liu C,Zhang J,et al. Pyruvate dehydrogenase kinase regulates macrophage polarization in metabolic and inflammatory diseases[J/OL]. Front Immunol,2023,14: 1296687.DOI:10.3389/fimmu.2023.1296687.
|