[1] |
Hunter DJ,Bierma-Zeinstra S. Osteoarthritis[J]. Lancet,2019,393(10182):1745-1759.
|
[2] |
Hayashi D, Guermazi A, Kwoh CK. Clinical and translational potential of MRI evaluation in knee osteoarthritis[J/OL]. Curr Rheumatol Rep, 2014, 16(1):391. DOI: 10.1007/s11926-013-0391-6.
|
[3] |
Roemer FW,Hunter DJ,Crema MD,et al. An illustrative overview of semi-quantitative MRI scoring of knee osteoarthritis: lessons learned from longitudinal observational studies[J]. Osteoarthritis Cartilage,2016,24(2):274-289.
|
[4] |
Roemer FW,Demehri S,Omoumi P,et al. State of the art: imaging of osteoarthritis-revisited 2020[J]. Radiology,2020,296(1):5-21.
|
[5] |
Peterfy CG,Guermazi A,Zaim S,et al. Whole-organ magnetic resonance imaging score(WORMS)of the knee in osteoarthritis[J]. Osteoarthritis Cartilage,2004,12(3):177-190.
|
[6] |
Felson DT,Lynch J,Guermazi A,et al. Comparison of BLOKS and WORMS scoring systems part II. Longitudinal assessment of knee MRIs for osteoarthritis and suggested approach based on their performance: data from the Osteoarthritis Initiative[J]. Osteoarthritis Cartilage,2010,18(11):1402-1407.
|
[7] |
Kornaat PR,Ceulemans RY,Kroon HM,et al. MRI assessment of knee osteoarthritis: knee osteoarthritis scoring system(KOSS)—inter-observer and intra-observer reproducibility of a compartment-based scoring system[J]. Skeletal Radiol,2005,34(2):95-102.
|
[8] |
Hunter DJ,Lo GH,Gale D,et al. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS(Boston Leeds Osteoarthritis Knee Score)[J]. Ann Rheum Dis,2008,67(2):206-211.
|
[9] |
Hunter DJ,Guermazi A,Lo GH,et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS(MRI osteoarthritis knee score)[J]. Osteoarthritis Cartilage,2011,19(8):990-1002.
|
[10] |
Rhodes LA,Grainger AJ,Keenan AM,et al. The validation of simple scoring methods for evaluating compartment-specific synovitis detected by MRI in knee osteoarthritis[J]. Rheumatology,2005,44(12):1569-1573.
|
[11] |
Baker K,Grainger A,Niu J,et al. Relation of synovitis to knee pain using contrast-enhanced MRIs[J]. Ann Rheum Dis,2010,69(10):1779-1783.
|
[12] |
Guermazi A,Roemer FW,Hayashi D,et al. Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with,or at high risk of,knee osteoarthritis: the MOST study[J]. Ann Rheum Dis,2011,70(5):805-811.
|
[13] |
Marlovits S,Striessnig G,Resinger CT,et al. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging[J]. Eur J Radiol,2004,52(3):310-319.
|
[14] |
Marlovits S,Singer P,Zeller P,et al. Magnetic resonance observation of cartilage repair tissue(MOCART)for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years[J]. Eur J Radiol,2006,57(1):16-23.
|
[15] |
Schreiner MM,Raudner M,Marlovits S,et al. The MOCART(magnetic resonance observation of cartilage repair tissue)2.0 knee score and atlas[J]. Cartilage,2021,13(1_suppl):571S-587S.
|
[16] |
Roemer FW,Guermazi A,Trattnig S,et al. Whole joint MRI assessment of surgical cartilage repair of the knee: cartilage repair osteoarthritis knee score(CROAKS)[J]. Osteoarthritis Cartilage,2014,22(6):779-799.
|
[17] |
Roemer FW,Frobell R,Lohmander LS,et al. Anterior cruciate ligament osteo arthritis score(ACLOAS): longitudinal MRI-based whole joint assessment of anterior cruciate ligament injury[J]. Osteoarthritis Cartilage,2014,22(5):668-682.
|
[18] |
Jaremko JL, Jeffery D, Buller M,et al. Preliminary validation of the knee inflammation MRI scoring system(KIMRISS)for grading bone marrow lesions in osteoarthritis of the knee: data from the Osteoarthritis Initiative[J/OL]. RMD Open, 2017, 3(1):e000355. DOI: 10.1136/rmdopen-2016-000355.
|
[19] |
Maksymowych WP, Jaremko JL, Pedersen SJ,et al. Comparative validation of the knee inflammation MRI scoring system and the MRI osteoarthritis knee score for semi-quantitative assessment of bone marrow lesions and synovitis-effusion in osteoarthritis: an international multi-reader exercise[J/OL]. Ther Adv Musculoskelet Dis, 2023, 15:1759720X231171766. DOI: 10.1177/1759720X231171766.
|
[20] |
Roemer FW,Collins J,Kwoh CK,et al. MRI-based screening for structural definition of eligibility in clinical DMOAD trials: rapid OsteoArthritis MRI Eligibility Score(ROAMES)[J]. Osteoarthritis Cartilage,2020,28(1):71-81.
|
[21] |
Roemer FW, Guermazi A, Collins JE,et al. Semi-quantitative MRI biomarkers of knee osteoarthritis progression in the FNIH biomarkers consortium cohort - Methodologic aspects and definition of change[J/OL]. BMC Musculoskelet Disord, 2016, 17(1):466. DOI: 10.1186/s12891-016-1310-6.
|
[22] |
Felson DT,Niu J,Gross KD,et al. Valgus malalignment is a risk factor for lateral knee osteoarthritis incidence and progression: findings from the Multicenter Osteoarthritis Study and the Osteoarthritis Initiative[J]. Arthritis Rheum,2013,65(2):355-362.
|
[23] |
Guermazi A, Niu J, Hayashi D,et al. Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis: population based observational study(Framingham Osteoarthritis Study)[J/OL]. BMJ, 2012, 345:e5339. DOI: 10.1136/bmj.e5339.
|
[24] |
Collins JE,Shrestha S,Losina E,et al. Five-year structural changes in the knee among patients with meniscal tear and osteoarthritis: data from a randomized controlled trial of arthroscopic partial meniscectomy versus physical therapy[J]. Arthritis Rheumatol,2022,74(8):1333-1342.
|
[25] |
Filbay SR,Roemer FW,Lohmander LS,et al. Evidence of ACL healing on MRI following ACL rupture treated with rehabilitation alone may be associated with better patient-reported outcomes: a secondary analysis from the KANON trial[J]. Br J Sports Med,2023,57(2):91-98.
|
[26] |
吴楠,郅新,赖云耀,等. 磁共振膝关节骨关节炎MOAKS评分在中国人群中的应用[J]. 中国医学影像学杂志,2016,24(4):312-315,320.
|
[27] |
王功夏,卫佳佳. 半定量膝关节骨关节炎MRI评分系统与WOMAC OA指数相关性研究[J]. 陕西医学杂志,2017,46(7):927-929.
|
[28] |
郑志研,何瑞轩,张志艳,等. 膝关节骨性关节炎软骨损伤MOAKS与其膝关节水肿和疼痛程度的相关性研究[J]. 影像研究与医学应用,2023,7(11):33-35.
|
[29] |
Hunter DJ,Altman RD,Cicuttini F,et al. OARSI Clinical Trials Recommendations: knee imaging in clinical trials in osteoarthritis[J]. Osteoarthritis Cartilage,2015,23(5):698-715.
|
[30] |
Guermazi A, Kalsi G, Niu J,et al. Structural effects of intra-articular TGF-β1 in moderate to advanced knee osteoarthritis: MRI-based assessment in a randomized controlled trial[J/OL]. BMC Musculoskelet Disord, 2017, 18(1):461. DOI: 10.1186/s12891-017-1830-8.
|
[31] |
Roemer FW, Aydemir A, Lohmander S,et al. Structural effects of sprifermin in knee osteoarthritis: a post-hoc analysis on cartilage and non-cartilaginous tissue alterations in a randomized controlled trial[J/OL]. BMC MusculoskeletDisord, 2016, 17:267. DOI: 10.1186/s12891-016-1128-2.
|
[32] |
Guermazi A, Roemer FW, Crema MD,et al. Strategic application of imaging in DMOAD clinical trials: focus on eligibility,drug delivery,and semiquantitative assessment of structural progression[J/OL]. Ther Adv Musculoskelet Dis, 2023, 15:1759720X231165558. DOI: 10.1177/1759720X231165558.
|
[33] |
Roemer FW, Hochberg MC, Carrino JA,et al. Role of imaging for eligibility and safety of a-NGF clinical trials[J/OL]. Ther Adv Musculoskelet Dis, 2023, 15:1759720X231171768. DOI: 10.1177/1759720X231171768.
|
[34] |
Roemer FW,Nevitt MC,Felson DT,et al. Predictive validity of within-grade scoring of longitudinal changes of MRI-based cartilage morphology and bone marrow lesion assessment in the tibio-femoral joint—the MOST study[J]. Osteoarthritis Cartilage,2012,20(11):1391-1398.
|
[35] |
Roemer F,Maschek S,Wisser A,et al. Worsening of articular tissue damage as defined by semi-quantitative MRI is associated with concurrent quantitative cartilage loss over 24 months[J]. Cartilage,2023,14(1):39-47.
|
[36] |
Roemer FW,Jarraya M,Hayashi D,et al. A perspective on the evolution of semi-quantitative MRI assessment of osteoarthritis: past,present and future[J]. Osteoarthritis Cartilage,2024,32(4):460-472.
|
[37] |
Peterfy CG,Gold G,Eckstein F,et al. MRI protocols for whole-organ assessment of the knee in osteoarthritis[J]. Osteoarthritis Cartilage,2006,14(Suppl A):A95-A111.
|
[38] |
Roemer FW, Kwoh CK, Hannon MJ,et al. Semiquantitative assessment of focal cartilage damage at 3T MRI: a comparative study of dual echo at steady state(DESS)and intermediate-weighted(IW)fat suppressed fast spin echo sequences[J/OL]. Eur J Radiol, 2011, 80(2):e126-e131. DOI: 10.1016/j.ejrad.2010.07.025.
|
[39] |
Roemer FW,Guermazi A,Lynch JA,et al. Short tau inversion recovery and proton density-weighted fat suppressed sequences for the evaluation of osteoarthritis of the knee with a 1.0 T dedicated extremity MRI: development of a time-efficient sequence protocol[J]. Eur Radiol,2005,15(5):978-987.
|
[40] |
Roemer FW,Engelke K,Li L,et al. MRI underestimates presence and size of knee osteophytes using CT as a reference standard[J]. Osteoarthritis Cartilage,2023,31(5):656-668.
|
[41] |
Guermazi A,Roemer FW,Haugen IK,et al. MRI-based semiquantitative scoring of joint pathology in osteoarthritis[J]. Nat Rev Rheumatol,2013,9(4):236-251.
|
[42] |
Fritz J,Guggenberger R,Del Grande F. Rapid musculoskeletal MRI in 2021: clinical application of advanced accelerated techniques[J]. AJR Am J Roentgenol,2021,216(3):718-733.
|
[43] |
Schnaiter JW,Roemer F,McKenna-Kuettner A,et al. Diagnostic accuracy of an MRI protocol of the knee accelerated through parallel imaging in correlation to arthroscopy[J]. Rofo,2018,190(3):265-272.
|
[44] |
Li X,Peng Z,Sun Y,et al. Is simultaneous multisection turbo spin echo ready for clinical MRI?A feasibility study on fast imaging of knee lesions[J]. Clin Radiol,2020,75(3):238.e21-238.238.e30.
|
[45] |
Lee SH,Lee YH,Suh JS. Accelerating knee MR imaging: compressed sensing in isotropic three-dimensional fast spin-echo sequence[J]. Magn Reson Imaging,2018,46:90-97.
|
[46] |
Garwood ER,Recht MP,White LM. Advanced imaging techniques in the knee: benefits and limitations of new rapid acquisition strategies for routine knee MRI[J]. AJR Am J Roentgenol,2017,209(3):552-560.
|
[47] |
LeCun Y,Bengio Y,Hinton G. Deep learning[J]. Nature,2015,521(7553):436-444.
|
[48] |
Johnson PM, Lin DJ, Zbontar J,et al. Deep learning reconstruction enables prospectively accelerated clinical knee MRI[J/OL]. Radiology, 2023, 307(2):e220425. DOI: 10.1148/radiol.220425.
|
[49] |
Lin DJ,Walter SS,Fritz J. Artificial intelligence-driven ultra-fast superresolution MRI: 10-fold accelerated musculoskeletal turbo spin echo MRI within reach[J]. Invest Radiol,2023,58(1):28-42.
|
[50] |
Liu F,Zhou Z,Samsonov A,et al. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection[J]. Radiology,2018,289(1):160-169.
|
[51] |
Pedoia V,Norman B,Mehany SN,et al. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects[J]. J Magn Reson Imaging,2019,49(2):400-410.
|
[52] |
Chang PD,Wong TT,Rasiej MJ. Deep learning for detection of complete anterior cruciate ligament tear[J]. J Digit Imaging,2019,32(6):980-986.
|
[53] |
Mobasheri A, Saarakkala S, Finnilä M,et al. Recent advances in understanding the phenotypes of osteoarthritis[J/OL]. F1000Res, 2019, 8:F1000 Faculty Rev-2091. DOI: 10.12688/f1000research.20575.1.
|
[54] |
Dell’Isola A, Allan R, Smith SL,et al. Identification of clinical phenotypes in knee osteoarthritis: a systematic review of the literature[J/OL]. BMC Musculoskelet Disord, 2016, 17(1):425. DOI: 10.1186/s12891-016-1286-2.
|
[55] |
Roemer FW,Collins JE,Neogi T,et al. Association of knee OA structural phenotypes to risk for progression: a secondary analysis from the Foundation for National Institutes of Health Osteoarthritis Biomarkers study(FNIH)[J]. Osteoarthritis Cartilage,2020,28(9):1220-1228.
|
[56] |
Lee JJ,Namiri NK,Astuto B,et al. Personalized risk model and leveraging of magnetic resonance imaging-based structural phenotypes and clinical factors to predict incidence of radiographic osteoarthritis[J]. Arthritis Care Res,2023,75(3):501-508.
|
[57] |
Namiri NK, Lee J, Astuto B,et al. Deep learning for large scale MRI-based morphological phenotyping of osteoarthritis[J/OL]. Sci Rep, 2021, 11(1):10915. DOI: 10.1038/s41598-021-90292-6.
|
[58] |
Zhong J,Yao Y,Cahill DG,et al. Unsupervised domain adaptation for automated knee osteoarthritis phenotype classification[J]. Quant Imaging MedSurg,2023,13(11):7444-7458.
|
[59] |
Jamshidi A,Pelletier JP,Labbe A,et al. Machine learning-based individualized survival prediction model for total knee replacement in osteoarthritis: data from the osteoarthritis initiative[J]. Arthritis Care Res,2021,73(10):1518-1527.
|
[60] |
Joseph GB,McCulloch CE,Nevitt MC,et al. Tool for osteoarthritis risk prediction(TOARP)over 8 years using baseline clinical data,X-ray,and MRI: data from the osteoarthritis initiative[J]. J Magn Reson Imaging,2018,47(6):1517-1526.
|
[61] |
Joseph GB,McCulloch CE,Nevitt MC,et al. Machine learning to predict incident radiographic knee osteoarthritis over 8 years using combined MR imaging features,demographics,and clinical factors: data from the Osteoarthritis Initiative[J]. Osteoarthritis Cartilage,2022,30(2):270-279.
|
[62] |
Rajamohan HR, Wang T, Leung K,et al. Prediction of total knee replacement using deep learning analysis of knee MRI[J/OL]. Sci Rep, 2023, 13(1):6922. DOI: 10.1038/s41598-023-33934-1.
|