[1] |
Zhang JF, Song LH, Wei JN, et al. Prevalence of and risk factors for the occurrence of symptomatic osteoarthritis in rural regions of Shanxi Province, China[J]. Int J Rheum Dis, 2014, 19(8): 781-789.
|
[2] |
赵学千,贾育松,孙旗,等.关节镜清理联合术后针刺与鸡尾酒疗法治疗膝骨关节炎[J/CD].中华关节外科杂志(电子版),2018,12(5):681-686
|
[3] |
Zhao BX, Yu YB, Liu WQ, et al. Efficacy of arthroscopic loose body removal for knee osteoarthritis[J]. Exp Ther Med, 2018, 15(2): 1666-1671.
|
[4] |
Teunis T, Beekhuizen M, Van Osch GV, et al. Soluble mediators in posttraumatic wrist and primary knee osteoarthritis[J]. Arch Bone Jt Surg, 2014, 2(3): 146-150.
|
[5] |
Yu L, Liu S, Zhao Z, et al. Extracorporeal shock wave rebuilt subchondral bone in vivo and activated Wnt5a/Ca 2+ Signaling In Vitro[J/OL]. Biomed Res Int, 2017:1404650. doi: 10.1155/2017/1404650.
|
[6] |
席立成,李宏宇,赵子星,等.体外冲击波治疗早中期膝关节骨性关节炎效果观察及其机制[J].山东医药杂志,2016,56(48):60-62.
|
[7] |
邱贵兴.骨关节炎诊治指南[J].中华骨科杂志,2007,27(10):793-796.
|
[8] |
张立智,刘兰兰.早期膝骨关节炎的划分[J/CD]. 中华关节外科杂志(电子版),2018,12(5):700-706.
|
[9] |
Trueba Vasavilbaso C, Rosas Bello CD, Medina López E, et al. Benefits of different postoperative treatments in patients undergoing knee arthroscopic debridement[J]. Open Access Rheumatol, 2017, 9:171-179. doi: 10.2147/OARRR.S138353.
|
[10] |
熊志宏,熊翔.关节镜下有限清理术结合玻璃酸钠治疗高龄膝骨性关节炎[J].实用医学杂志,2012,28(18):3057-3059.
|
[11] |
Su X, Li C, Liao W, et al. Comparison of arthroscopic and conservative treatments for knee osteoarthritis:a 5-year retrospective comparative study[J]. Arthroscopy, 2018, 34(3): 652-659.
|
[12] |
Zhao Z, Ji H, Jing R, et al. Extracorporeal shock-wave therapy reduces progression of knee osteoarthritis in rabbits by reducing nitric oxide level and chondrocyte apoptosis[J]. Arch Orthop Trauma Surg, 2012, 132(11): 1547-1553.
|
[13] |
黄艺林,刘洪柏,张鸣生.低能量体外冲击波对兔膝骨关节炎软骨细胞修复和重塑能力的影响[J].生物医学工程与临床,2016,20(6):557-561.
|
[14] |
Wang CJ, Sun YC, Wong T, et al. Extracorporeal shockwave therapy shows time-dependent chondroprotective effects in osteoarthritis of the knee in rats[J]. J Surg Res, 2012, 178(1): 196-205.
|
[15] |
Kawcak CE, Frisbie DD, Mcllwraith CW. Effects of extracorporeal shock wave therapy and polysulfated glycosaminoglycan treatment on subchondral bone, serum biomarkers, and synovial fluid biomarkers in horses with induced osteoarthritis[J]. Am J Vet Res, 2011, 72(6): 772-779.
|
[16] |
Gollwitzer H, Saxena A, Didomenico LA, et al. Clinically relevant effectiveness of focused extracorporeal shock wave therapy in the treatment of chronic plantar fasciitis: a randomized, controlled multicenter study[J]. J Bone Joint Surg Am, 2015, 97(9): 701-708.
|
[17] |
Lyon R, Liu XC, Kubin M, et al. Does extracorporeal shock wave therapy enhance healing of osteochondritis dissecans of the rabbit knee? A pilot study[J]. Clin Orthop Relat Res, 2013, 471(4): 1159-1165.
|
[18] |
El Mansouri FE, Chabane N, Zayed N, et al. Contribution of H3K4 methylation by SET-1A to interleukin-1-induced cyclooxygenase 2 and inducible nitric oxide synthase expression in human osteoarthritis chondrocytes[J]. Arthritis Rheum, 2011, 63(1): 168-179.
|
[19] |
Tao R, Wang S, Xia X, et al. Pyrroloquinoline quinone slows down the progression of osteoarthritis by inhibiting nitric oxide production and metalloproteinase synthesis[J]. Inflammation, 2015, 38(4): 1546-1555.
|
[20] |
Wu M, Feng K, Li Q, et al. Glutaraldehyde-polymerized hemoglobin and tempol(polyHb-tempol)has superoxide dismutase activity that can attenuate oxidative stress on endothelial cells induced by superoxide anion[J]. Artif Cells Nanomed Biotechnol, 2018, 46(1): 47-55.
|
[21] |
Morrison NA, Day CJ, Nicholson GC. Dominant negative MCP-1 blocks human osteoclast differentiation [J]. J Cell Biochem, 2014, 115(2): 303-312.
|