[1] |
Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options[J]. Med Clin North Am, 2020, 104(2): 293-311.
|
[2] |
Hunter DJ, March L, Chew M. Osteoarthritis in 2020 and beyond: a lancet commission[J]. Lancet, 2020, 396(10264): 1711-1712.
|
[3] |
Zhang Y, Tawiah GK, Wu X, et al. Primary cilium-mediated mechanotransduction in cartilage chondrocytes[J]. Exp Biol Med, 2023, 248(15): 1279-1287.
|
[4] |
Zhou H, Wu S, Ling H, et al. Primary Cilia: a cellular regulator of articular cartilage degeneration[J/OL]. Stem Cells Int, 2022, 2022: 2560441. DOI: 10.1155/2022/2560441.
|
[5] |
杨明义, 马尧, 许珂, 等. 软骨下骨硬化在骨关节炎发病机制中的作用研究[J/OL]. 中华关节外科杂志(电子版), 2020,14(5): 602-607.
|
[6] |
Li X, Guo S, Su Y, et al. Role of primary cilia in skeletal disorders[J/OL]. Stem Cells Int, 2022, 2022: 6063423. DOI: 10.1155/2022/6063423.
|
[7] |
Zhou H, Zhang L, Chen Y, et al. Research progress on the hedgehog signalling pathway in regulating bone formation and homeostasis[J/OL]. Cell Prolif, 2022, 55(1): e13162. DOI: 10.1111/cpr.13162.
|
[8] |
Verbruggen SW, Sittichokechaiwut A, Reilly GC. Osteocytes and primary Cilia[J]. Curr Osteoporos Rep, 2023, 21(6): 719-730.
|
[9] |
Chien A, Shih SM, Bower R, et al. Dynamics of the IFT machinery at the ciliary tip[J/OL]. eLife, 2017, 6: e28606. DOI: 10.7554/eLife.28606.
|
[10] |
Chinipardaz Z, Liu M, Graves DT, et al. Role of primary Cilia in bone and cartilage[J]. J Dent Res, 2022, 101(3): 253-260.
|
[11] |
Wang Z, Wann AT, Thompson CL, et al. IFT88 influences chondrocyte actin organization and biomechanics[J]. Osteoarthritis Cartilage, 2016, 24(3): 544-554.
|
[12] |
Irianto J, Ramaswamy G, Serra R, et al. Depletion of chondrocyte primary cilia reduces the compressive modulus of articular cartilage[J]. J Biomech, 2014, 47(2): 579-582.
|
[13] |
Tiberio F, Parolini O, Lattanzi W. Ciliary signaling and mechanotransduction in the pathophysiology of craniosynostosis[J/OL]. Genes, 2021, 12(7): 1073. DOI: 10.3390/genes12071073.
|
[14] |
Chen Q, Shou P, Zheng C, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts?[J]. Cell Death Differ, 2016, 23(7): 1128-1139.
|
[15] |
Yang J, Andre P, Ye L, et al. The hedgehog signalling pathway in bone formation[J]. Int J Oral Sci, 2015, 7(2): 73-79.
|
[16] |
胡康一, 曹林忠, 尚征亚, 等. Hedgehog信号通路在激素性股骨头坏死作用机制中的研究进展[J]. 风湿病与关节炎, 2023,12(12): 62-67, 77.
|
[17] |
Bangs F, Anderson KV. Primary cilia and mammalian hedgehog signaling[J/OL]. Cold Spring Harb Perspect Biol, 2017, 9(5): a028175. DOI: 10.1101/cshperspect.a028175.
|
[18] |
Kong JH, Siebold C, Rohatgi R. Biochemical mechanisms of vertebrate hedgehog signaling [J/OL]. Development, 2019, 146(10): dev166892. DOI: 10.1242/dev.166892.
|
[19] |
Kim J, Kato M, Beachy PA. Gli2 trafficking links hedgehog-dependent activation of smoothened in the primary cilium to transcriptional activation in the nucleus[J]. Proc Natl Acad Sci USA, 2009, 106(51): 21666-21671.
|
[20] |
Rohatgi R, Milenkovic L, Scott MP. Patched1 regulates hedgehog signaling at the primary cilium[J]. Science, 2007, 317(5836): 372-376.
|
[21] |
Rudolf AF, Kinnebrew M, Kowatsch C, et al. The morphogen sonic hedgehog inhibits its receptor patched by a pincer grasp mechanism[J]. Nat Chem Biol, 2019, 15(10): 975-982.
|
[22] |
Zhang Z, Shen L, Law K, et al. Suppressor of fused chaperones gli proteins to generate transcriptional responses to sonic hedgehog signaling[J/OL]. Mol Cell Biol, 2017, 37(3): e00421-16. DOI: 10.1128/MCB.00421-16.
|
[23] |
Sigafoos AN, Paradise BD, Fernandez-Zapico ME. Hedgehog/GLI signaling pathway: transduction, regulation, and implications for disease[J/OL]. Cancers, 2021, 13(14): 3410. DOI: 10.3390/cancers13143410.
|
[24] |
Pietrobono S, Gagliardi S, Stecca B. Non-canonical hedgehog signaling pathway in cancer: activation of GLI transcription factors beyond smoothened [J/OL]. Front Genet, 2019, 10: 556. DOI: 10.3389/fgene.2019.00556.
|
[25] |
Gorojankina T. Hedgehog signaling pathway: a novel model and molecular mechanisms of signal transduction[J]. Cell Mol Life Sci, 2016, 73(7): 1317-1332.
|
[26] |
Alman BA. The role of hedgehog signalling in skeletal health and disease[J]. Nat Rev Rheumatol, 2015, 11(9): 552-560.
|
[27] |
Wang H, Zheng C, Lu W, et al. Hedgehog signaling orchestrates cartilage-to-bone transition independently of Smoothened[J]. Matrix Biol, 2022, 110: 76-90.
|
[28] |
Li W, Zhu Z, He K, et al. Primary cilia in satellite cells are the mechanical sensors for muscle hypertrophy[J/OL]. Proc Natl Acad Sci USA, 2022, 119(24): e2103615119. DOI: 10.1073/pnas.2103615119.
|
[29] |
Zhang Y, Tawiah GK, Zhang Y, et al. HDAC6 inhibition regulates substrate stiffness-mediated inflammation signaling in chondrocytes[J]. Acta Biochim Biophys Sin, 2023, 55(12): 1987-1998.
|
[30] |
Ma R, Kutchy NA, Chen L, et al. Primary cilia and ciliary signaling pathways in aging and age-related brain disorders[J/OL]. Neurobiol Dis, 2022, 163: 105607. DOI: 10.1016/j.nbd.2021.105607.
|
[31] |
Jenks AD, Vyse S, Wong JP, et al. Primary cilia mediate diverse kinase inhibitor resistance mechanisms in cancer[J]. Cell Rep, 2018, 23(10): 3042-3055.
|
[32] |
McGlashan SR, Cluett EC, Jensen CG, et al. Primary cilia in osteoarthritic chondrocytes: from chondrons to clusters[J]. Dev Dyn, 2008, 237(8): 2013-2020.
|
[33] |
Shea CA, Murphy P. The primary cilium on cells of developing skeletal rudiments; distribution, characteristics and response to mechanical stimulation[J/OL]. Front Cell Dev Biol, 2021, 9: 725018. DOI: 10.3389/fcell.2021.725018.
|
[34] |
Wan Y, Szabo-Rogers HL. Chondrocyte polarity during endochondral ossification requires protein-protein interactions between prickle1 and dishevelled2/3[J]. J Bone Miner Res, 2021, 36(12): 2399-2412.
|
[35] |
Chery DR, Han B, Zhou Y, et al. Decorin regulates cartilage pericellular matrix micromechanobiology[J]. Matrix Biol, 2021, 96: 1-17.
|
[36] |
Wu S, Zhou H, Ling H, et al. LIPUS regulates the progression of knee osteoarthritis in mice through primary cilia-mediated TRPV4 channels[J]. Apoptosis, 2024, 29(5-6): 785-798.
|
[37] |
Meng H, Fu S, Ferreira MB, et al. YAP activation inhibits inflammatory signaling and cartilage breakdown associated with reduced primary cilia expression[J]. Osteoarthritis Cartilage, 2023, 31(5): 600-612.
|
[38] |
Ho EK, Stearns T. Hedgehog signaling and the primary Cilium: implications for spatial and temporal constraints on signaling[J/OL]. Development, 2021, 148(9): dev195552. DOI: 10.1242/dev.195552.
|
[39] |
Chang CF, Ramaswamy G, Serra R. Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms of early osteoarthritis [J]. Osteoarthritis Cartilage, 2012, 20(2): 152-161.
|
[40] |
Coveney CR, Zhu L, Miotla-Zarebska J, et al. Role of ciliary protein intraflagellar transport protein 88 in the regulation of cartilage thickness and osteoarthritis development in mice[J]. Arthritis Rheumatol, 2022, 74(1): 49-59.
|
[41] |
Hafsia N, Forien M, Renaudin F, et al. Galectin 3 deficiency alters chondrocyte primary cilium formation and exacerbates cartilage destruction via mitochondrial apoptosis[J/OL]. Int J Mol Sci, 2020, 21(4): 1486. DOI: 10.3390/ijms21041486.
|
[42] |
Kitami M, Kaku M, Thant L, et al. A loss of primary cilia by a reduction in mTOR signaling correlates with age-related deteriorations in condylar cartilage[J]. Geroscience, 2024, 46(6): 5995-6007.
|
[43] |
Coveney CR, Samvelyan HJ, Miotla-Zarebska J, et al. Ciliary IFT88 protects coordinated adolescent growth plate ossification from disruptive physiological mechanical forces[J]. J Bone Miner Res, 2022, 37(6): 1081-1096.
|